
Platform-Agnostic End-to-End Encryption for
Modern Instant Messaging Platforms

Mikko Ilmonen
mikko.ilmonen.16@aberdeen.ac.uk

BSc (Hons), Computer Science, University of Aberdeen, 2020

A dissertation submitted in partial fulfilment

of the requirements for the degree of

Bachelor of Science (Honours)
of the

University of Aberdeen.

Department of Computing Science

2020

Declaration

No portion of the work contained in this document has been submitted in support of an application

for a degree or qualification of this or any other university or other institution of learning. All

verbatim extracts have been distinguished by quotation marks, and all sources of information have

been specifically acknowledged.

Signed:

Date: 2020

Word Count: 17488

Abstract

This dissertation investigates whether it is possible to perform end-to-end encryption over an ar-

bitrary Instant Messaging Platform (IM-P), placing no implicit trust in such platform itself.

In the current state of the world, people are fragmented across multiple different messaging

platforms, alarmingly few of which are completely transparent about the data they collect and the

security features they provide. Regardless of whether users trust their platform or not, they can be

forced to use them for the simple reason of trying to reach someone they know.

The dissertation proposes this implicit trust should not be required in the first place, and

users can use additional software to communicate securely with a set of recipients, even if they

do not trust the platform they communicate on. While this has already been done in the past with

PGP encrypted e-mails transmitted over an unsecure medium, it has never been widely successful

either due to the difficulty of setup, decline of e-mail as a messaging platform, or more likely a

combination of the two.

As the proposed software is open source, the trust is not only shifted from the Instant Mes-

saging Platform to the software, but the user of the software themselves. There is no implicit trust

placed onto any code; the proposed software can be fully inspected before any trust is placed on

it.

This dissertation offers a fully transparent software solution for the user, binding seamlessly

into their platform of choice and automatically encrypting/decrypting messages where appropriate.

The Instant Messaging Platform will still be used to transmit ciphertext over to the other person,

who then uses similar software to decrypt the messages.

Users will gain the benefit of end-to-end message encryption without additional overhead

apart from installing the software, regardless of the trust placed for any Instant Messaging Plat-

form.

Acknowledgements

I would like to thank the 205 Gang for always being there for me.

Having the room there has been of more importance than any degree could ever be.

Thanks to my supervisor Matthew for putting up with my crazy weekly babbling.

Thank you Wamberto, Bruce — you were there to support me, in matters either large or small.

I also want to give special thanks to my tea kettle for not giving up on me.

Yo Keeyan, thanks for the out-of-this-world discussions during these four years.

We still need to finish that Halo map.

Konrad, it’s been fun working on random projects and stressing about studies together.

Now when that’s over, we can finally relax, GVC, and stress about work instead.

Never change, Smartin. <3

Contents

Abbreviations 8

1 Introduction 10
1.1 Motivation . 10

1.2 Goals & Non-Goals . 11

1.2.1 Goals . 11

1.2.2 Non-Goals . 11

2 Background 12
2.1 IM Platforms . 12

2.2 Why Encrypt? . 12

2.3 Public-Private-key Encryption . 13

2.3.1 PPK Scenarios . 13

2.4 PGP . 14

2.4.1 GPG . 15

2.5 Current Usage of PGP . 15

2.5.1 Why PGP? . 16

2.6 Previous Attempts . 16

3 Design & Architecture 18
3.1 Design . 18

3.1.1 Core Requirements . 18

3.2 Architecture . 19

3.2.1 Morpheus . 20

3.2.2 Icelos - Morpheus Client Daemon . 20

3.2.3 Encryption on Chat . 22

3.2.4 Interfacing with IM-Ps . 22

3.2.5 Core Elements . 25

3.2.6 Browser Extension Design . 26

3.2.7 Recipient Validation . 28

4 Implementation 29
4.1 Development Setup . 29

4.2 Morpheus . 29

CONTENTS 6

4.2.1 Core Elements . 30

4.2.2 Promises . 30

4.2.3 Messaging . 30

4.2.4 Context Separation . 31

4.2.5 Modules . 32

4.2.6 More Efficient Querying . 33

4.2.7 Element Cloning . 34

4.2.8 Message Chunking . 35

4.2.9 Message Observer . 36

4.3 Icelos . 37

4.3.1 HTTP Messaging . 37

4.3.2 Docker . 38

4.3.3 Service . 38

4.4 Interfacing . 38

4.4.1 Inject Script . 38

4.4.2 Reverse Engineering . 39

4.4.3 Mobile . 40

4.5 Usability . 41

4.5.1 Colours & Clarity . 41

4.5.2 Keys . 42

5 Evaluation 44
5.1 Overview . 44

5.1.1 Portability . 44

5.1.2 Performance . 44

5.2 Security . 49

5.2.1 Perfect Forward Secrecy . 49

5.2.2 Abuse Cases . 49

5.3 Testing . 53

5.3.1 Component Testing . 53

5.3.2 System Testing . 53

5.3.3 Manual Testing . 53

5.4 Known Issues . 54

5.4.1 Store Availability . 54

5.4.2 No separation of Own Keys from Recipient Keys 54

5.4.3 Difficulty of Creating Modules . 54

5.5 Fulfilment of Requirements . 54

6 Discussion 56
6.1 Achievements . 56

6.1.1 Platform-Agnosticism . 56

6.1.2 Security . 56

6.1.3 Respect for peoples’ individual setups 57

CONTENTS 7

6.1.4 Performance . 57

6.2 Future Work . 58

6.2.1 Usability & Commercialisation . 58

6.2.2 Key Exchange . 59

6.2.3 Message Protocols . 59

6.2.4 Message Formats . 59

6.2.5 Combating Metadata . 60

6.2.6 Mobile . 60

6.3 Learning Opportunities . 61

7 Conclusion 62

A User Manual 63
A.1 Installing Morpheus . 63

A.1.1 Building the Extension . 63

A.1.2 Setting up Icelos . 65

A.1.3 Setting up PGP . 65

A.1.4 Exchanging Keys Securely . 66

A.1.5 Frequently Asked Questions . 66

B Maintenance Manual 71
B.1 Software Requirements . 71

B.2 Installation . 71

B.3 Implementing Modules . 71

B.4 Project Tree . 73

B.4.1 Root . 73

B.4.2 Morpheus . 73

B.4.3 Icelos . 74

Abbreviations

API Application Programming Interface

ARIA Accessible Rich Internet Applications

CSS Cascading Style Sheets

CSV Comma Separated Value

DOM Data Object Model

DRA Double Ratchet Algorithm

ECC Elliptic Curve Cryptography

GDPR General Data Protection Regulation

GNU GNU’s Not UNIX

GPG GNU Privacy Guard

HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

ID Identifier

IM Instant Messaging

IMAP Internet Message Access Protocol

IM-P Instant Messaging Platform — refers to the collective front-end software that provides an

Instant Messaging Service for its users.

IM-S Instant Messaging Service — refers to the systems in place that deliver Instant Messages

between a set of users.

IRC Internet Relay Chat

JS JavaScript

JSON JavaScript Object Notation

ABBREVIATIONS 9

MitM Man-in-the-Middle

MSG Message

NFC Near-Field Communications

OS Operating System

OTR Off-The-Record Messaging

PGP Pretty Good Privacy

POP Post Office Protocol

PPK Public-Private Key

RDF Resource Description Framework

SMS Short Message Service

SSH Secure Shell

SSL Secure Socket Layer

TLS Transport Layer Security

UI User Interface

UNIX The UNIX operating system family

URL Uniform Resource Locator

W3C World Wide Web Consortium

Chapter 1

Introduction

Electronic messaging has changed the way people communicate over long distances. Instant Mes-

saging (IM) is a form of communication that has been widely adopted in the last decades, over-

throwing most other means of messaging such as e-mail and SMS.

Perhaps unsurprisingly, we can find a few different providers of Instant Messaging Service

(IM-S)s with varying levels of promised and realised security. Notable ones that are widely used

include Facebook Messenger, WhatsApp, iMessage and Telegram1, all of which promise to pro-

vide some form of end-to-end encryption for their messages [16, 18].

Since the majority of these IM-Ss are of proprietary nature, there is unfortunately little to no

transparency in the security of the systems. Users are left to place their full trust on the company

on their messaging app’s2 security. However, this status quo can be circumvented.

1.1 Motivation
There have been various attempts in creating open-source Instant Messaging Platform (IM-P)s to

‘replace’ the usage of the major proprietary providers. Projects such as Signal, Matrix, Wire3

and the like take pride in being fully open-sourced and transparent, thus enhancing their security

[12, 2, 21]. However, all of them have ultimately failed in having the masses adopt the services.

Even if such a platform was equal in every way to current platforms, users might not switch.

One issue behind adopting an alternative could be users’ ‘fatigue’ of yet another IM-P — switching

always takes resources [17]. Another is that people will not want to move to a platform with no

users. While a single user may feel the need to change, they will be discouraged to do so in their

own social network as everyone else is using a different platform [3]. Yet another issue may be the

fact that some of the open-source platforms require significant configuration or even running your

own server (for maximum security), something which is viewed an infeasible task for an average

user [3].

I will not go into much detail why open-source alternatives are not adopted, as there are

probably many reasons behind this observed behaviour. However, this does raise the question that

sparked motivation for this project — in the current state of the world, can we explicitly choose
not to trust the IM-Ps, yet use them securely?

1Respectively: https://messenger.com, https://whatsapp.com, https://support.apple.com/
explore/messages, and https://telegram.org

2Please note that hereinafter the word ‘app’ is used abbreviating the word ‘application’, not necessarily referring to
a mobile app, even if it is the case most of the applications can run on mobile platforms.

3Respectively: https://signal.org, https://matrix.org, and https://wire.com

https://messenger.com
https://whatsapp.com
https://support.apple.com/explore/messages
https://support.apple.com/explore/messages
https://telegram.org
https://signal.org
https://matrix.org
https://wire.com

1.2. GOALS & NON-GOALS 11

1.2 Goals & Non-Goals
Next we will briefly go over the goals and non-goals of the project.

1.2.1 Goals
Here we describe the main goals of the project, acting as core principles to shape the software

requirements further on.

• Provide a way for a security-concerned user to send messages over an arbitrary IM-P se-

curely.

• Do not enforce the installation of the application on the other users - only one user having

the software should be enough to communicate securely.

• Refrain from enforcing maximum security on the user; the encryption/decryption should be

something the user can toggle on and off as they like.

1.2.2 Non-Goals
Here we describe non-goals of the project, with a justification why an item is not considered a

valuable goal to pursue.

• Provide a way to perform secure key exchange over an insecure IM-P.

– This should be handled separately (e.g. generation, exchanging and signing of keys

offline).

– The software could expand further to include key exchange but for this project is out

of scope4.

• Combat the metadata exchanged on an IM-P.

– Metadata is a large problem in cryptography, but is out of the scope for this project5.

• Provide our own secure IM-P / IM-S.

– While it is true it would be considered more ‘secure’ to just tell both the participants

to install the latest version of the Signal messenger, it is both out of scope and very

much inefficient to force users to do so every time they want to establish a secure

communication.

• Create a new encryption mechanism only applicable to IM platforms.

– Not only has this already been attempted, it is out of scope for this project.

• Interface with IM-P X using a specific Application Programming Interface (API) Y that they

provide.

– This project is meant to be extremely generally applicable to any IM-P in order to

show that general encryption/decryption is possible.

– Whilst providing an API is great, platform-specific configuration is out of scope for

the time scale of this project.

4See Section 6.2 for more information on future work on these concerns.
5Ditto.

Chapter 2

Background

Despite there being protocols for encrypting online communication (such as Secure Socket Layer

(SSL) or Secure Shell (SSH)) that automatically perform key exchange and certificate authentica-

tion, not many have been created for personal data transmitted over the Internet. Usually, these

protocols have some form of of Public-Private Key (PPK) architecture that utilises asymmetric

cryptography. These protocols mostly exist in the transport layer, and little has been done to

perform encryption in the application layer.

2.1 IM Platforms
Instant Messaging Platform (IM-P)s are platforms that provide Instant Messaging Service (IM-S)s

to users. They are usually connected to a large corporation, and tied to a user account of some

kind. The term Instant Messaging (IM) is not clearly defined; nor is it clear how ‘instant’ it has to

be to be considered IM. In this dissertation IM-P refers to any interface that gives the user access

to any IM-S. Examples of this include, but are not limited to: WhatsApp, Facebook Messenger,

Discord, Signal, Telegram1.

2.2 Why Encrypt?
Data security, especially when it comes to user data, can be tricky to maintain in large scales.

There is significant evidence suggesting that security of user data on a global company scale is an

extremely difficult matter to handle. For example, Facebook has had almost yearly data leaks and

breaches in the past three years [9, 23]. While this has not included private user conversation logs,

it is alarming to say the least.

Apart from ‘casual’ IM-Ps that do not have a focused goal, there has been an influx of many

that revolve around a single goal. Many dating apps provide a platform for users to ‘match’ and

talk in a seemingly private chat setting. Naturally the data exchanged between parties on such apps

can be considered quite sensitive, yet for the most major platforms such as Tinder and Grindr2 there

is no information on the security of the app itself — the former has a statement along the lines of

‘you’ll just have to trust us that we keep our systems secure’3 while the latter has none.

So far, we have assumed the companies have good intentions regarding user data and security.

1Respectively: https://whatsapp.com, https://messenger.com, https://discordapp.com, https://
signal.org, and https://telegram.org

2Respectively: https://tinder.com and https://grindr.com
3At the time of writing, Tinder’s main website returns a 404 Not Found error when clicking on the ‘Security’ link

in the site navigation menu, but it can be found through some additional searching.

https://whatsapp.com
https://messenger.com
https://discordapp.com
https://signal.org
https://signal.org
https://telegram.org
https://tinder.com
https://grindr.com

2.3. PUBLIC-PRIVATE-KEY ENCRYPTION 13

Unfortunately there have been cases such as Cambridge Analytica [20], where personal data has

been sold and processed with questionable or zero user consent.

Perhaps a rather ominous reason for end-to-end encryption is the concern of mass surveil-

lance by governments or national entities. There is evidence of intelligence agencies actively

pursuing the removal of end-to-end encryption [15, 19] or the demand of ‘back doors’ [11] under

the reasoning of preventing terrorism or a variety of other criminal activities. Without going deep

into politics, I acknowledge that this is a faceted issue — but an issue nevertheless.

All in all, there exists an implicit trust model of IM-Ps that users are being forced to use

because of selection bias and lack of technical know-how. Surveillance is either taken for granted,

ignored, or accepted as too difficult to circumvent. Many users do not understand the implications

of their communications or personal data being collected, processed and stored for prolonged

periods of time. Some people are either not aware, not interested or simply in ignorance of these

security implications. It is an unfortunate status quo that a regular person might neglect for a

variety of reasons, but a security-oriented person might be concerned of.

The problem lies partly in the fact that these IM-Ps never did offer an open protocol to extend

the service on the users’ side; the services were provided to users as-is. Marketing speech of ‘very

secure end-to-end encryption’ and ‘secret many-thousand-bit keys’ has lulled many into believing

that security is not a concern of the individual; rather a service provided by a large conglomerate.

While this no doubt has worked for the masses to adopt these platforms, there is a constant risk

involved, and more importantly the notion of privacy gets twisted.

2.3 Public-Private-key Encryption
Public-Private Key (PPK) is a scheme where agents generate an asymmetric key pair. One of the

keys is kept public and is used to encrypt messages. These messages can only be decrypted using

the corresponding private key, which is kept hidden at a safe place. This ensures that messages

meant for person X (i.e. encrypted using their public key) can only be decrypted using person X’s

private key — in other words, person X themselves.

In order to establish a secure connection between two agents where both can encrypt and

decrypt messages, two key pairs are required, and so on. Here we will briefly discuss different

PPK arrangements that are commonly seen, and discuss how they translate into IM.

2.3.1 PPK Scenarios

2.3.1.1 One-on-one Conversation

The simplest form of conversation is between two people. Here there are two sets of asymmetric

keys, one for each person (See Figure 2.1). Both Bob and Alice share their public keys to everyone

who might want to communicate with them.

Alice uses Bob’s public key to encrypt a secret message to Bob. The message is then trans-

mitted over any (secure or unsecure) channel to Bob. Bob can then decrypt the message using

their private key.

2.3.1.2 Group Conversation

A slightly more complex scenario is where there are multiple recipients to a single message. This

is the case of ‘Group Chats’ on IM-Ps. Here all recipients have shared their public keys with

2.4. PGP 14

Figure 2.1: 1-1 conversation using PPK. An uppercase letter stands for a public key, a lowercase
letter stands for a private key.

Alice, who then encrypts a message to all of those keys. The message will be encrypted in such a

way that any of the corresponding private keys can decrypt the message.

It is worth noting here that a chat ‘group’ could contain more people than the encrypted

message is encrypted for. This is no different from passing the message over brokers such as

mail servers — an encrypted message’s contents are not directly compromised simply because it

reached an audience it was not intended for. Moreover, this enables us to send a message to a

majority of our intended recipients even if not all of the recipients are known in our keychain.

2.3.1.3 More complex setups
This brings us to the next point, which perhaps explains why key setups still have not been stan-

dardised. The possibilities of key setups are endless, and certainly not limited to only one-on-one

or group conversations. For example, if Chris in Figure 2.2 has recently rotated their keys, and

Alice has encrypted a message with their old public key, Chris might not be able to decrypt the

message. They can, however, ask anyone in this web of trust, to re-send the message with Chris’s

new public key (that has been securely transmitted to everyone). There is no protocol to hold all of

the possibilities in key setups; they are inherently dynamic. A design challenge for this software

was to accommodate most of these situations by making the design as flexible as possible.

2.4 PGP
Pretty Good Privacy (PGP)4 is a widely used standard that defines encryption and signing services.

This standard can be implemented in various languages, and as such implementations in different

languages exist.
4Hereinafter PGP (protocol) and OpenPGP (standard) are used interchangeably.

2.5. CURRENT USAGE OF PGP 15

Figure 2.2: Group conversation using PPK. An uppercase letter stands for a public key, a low-
ercase letter stands for a private key.

2.4.1 GPG

Quite confusingly, GNU Privacy Guard (GPG) is the GNU5 Free Software implementation of

PGP. It supports many different encryption schemes utilising Elliptic Curve Cryptography (ECC),

and the Curve25519 encryption6 that remains one of the most popular schemes used in the current

day [1].

There are other standards that provide encryption schemes and ECC. These include, but aren’t

limited to: CryptoCat, Peerio, Tor, Wire and GNUNet [6, 8, 7]. Many of these however are bundled

with additional software not directly related to encryption and decryption, where GPG is the most

widely used software suite for encryption, decryption and signing services. It also provides a

command-line, graphical and socket/agent interface for both human-process and process-process

communication, making it perfect for a portable software solution for encryption and decryption.

2.5 Current Usage of PGP
While PGP e-mail encryption schemes have been around for quite a while, these never got widely

adopted in public. Making matters worse, some service providers have turned away from using

5https://www.gnu.org/home.en.html
6https://wiki.gnupg.org/ECC

https://wiki.gnupg.org/ECC

2.6. PREVIOUS ATTEMPTS 16

open e-mail protocols such as Internet Message Access Protocol (IMAP) or Post Office Proto-

col (POP), leaving users tied to a browser interface with no means of encrypting or decrypting

messages.

The situation is even more dire when it comes to IM; no truly open standard ever existed

following the explosion of popular IM-Ps such as Facebook or WhatsApp. One might argue that

Internet Relay Chat (IRC) is this needed open standard, but even this has fragmented support7

and has various usability issues for the average (non-technical) end-user, including but not limited

to having to keep IRC always running (or running your own server), configuring a client and

choosing a network to join in, talking with some services by the use of text commands — all of

which can be intuitive for a programmer but not anyone else.

There is a group effort to create a ‘network of IM networks’ using an IRC extension called

BitlBee8, to unify every IM-S under the IRC protocol. One could perhaps encrypt all of their

communication using this method before it even leaves the client device via IRC, and send it to

the respective recipients over BitlBee as encrypted messages. Even after this tremendous technical

setup, there is a problem of making users adopt the same system on the other side — after all, if

there is not a way for someone else not using the system to decrypt an encrypted message when it

appears on their IM-P, then what’s the point?

2.5.1 Why PGP?

PGP was chosen as the encryption/decryption mechanism as this is already widely used in e-mail

messaging and has been proven quite effective. As the principle of IM is generally the same as

e-mail, we can quickly build upon systems provided by PGP. This reinforces the security of the

system as a new PPK encryption/decryption system is not developed; rather an existing, industry-

proven one is used.

Interfacing with PGP is easier to run a security audit on, and we avoid all of the pitfalls of

designing and implementing our own cryptographic algorithm. Furthermore, users that already

have an existing PGP setup can enjoy the software out-of-the-box, as PGP is already configured

and will handle encryption/decryption for them. This is useful for the demographic of people who

are already using PGP for e-mail or file encryption, for example.

2.6 Previous Attempts

There have been some attempts in creating a protocol for secure IM over an arbitrary line of

communication.

For example, Off-The-Record Messaging (OTR) is a protocol intended for encryption and au-

thentication on IM conversations. However, OTR does not at the current moment support multiple

user group chats or binary transport such as images or audio [22].

Some effort has also been made in using PGP on some web services. For example, there exist

a few browser extensions that enable encryption of messages in web interfaces such as the Gmail

7https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_protocols and https://en.
wikipedia.org/wiki/Internet_Relay_Chat#History

8https://www.bitlbee.org/main.php/news.r.html

https://en.wikipedia.org/wiki/Comparison_of_instant_messaging_protocols
https://en.wikipedia.org/wiki/Internet_Relay_Chat#History
https://en.wikipedia.org/wiki/Internet_Relay_Chat#History

2.6. PREVIOUS ATTEMPTS 17

web interface91011. Not all of these extensions are open-sourced, and they require access to Gmail

accounts, etc. No generalised approach seems to have been created yet for a generic platform, be

it instant or not-so-instant messaging.

In this dissertation, we will discuss an alternative, perhaps more straightforward approach to

managing secure communication using PGP Public-Private Keys over current day Instant Messag-

ing Platforms.

9https://www.mailvelope.com/
10https://www.streak.com/securegmail
11https://cryptup.org/

Chapter 3

Design & Architecture

Next, we will delve deeper into the design process, explaining the requirements and further solid-

ifying the concept of platform-agnosticism in the case of this software.

3.1 Design
One of the main design concerns for the software was to keep the application complexity as min-

imal as possible, but interfacing with existing applications as much as possible. Additionally,

a smaller and simpler project is easier to review and trust for the concerned user. It makes the

software fully transparent and creates a zero-trust situation if employed correctly.

This clarifies the purpose of the application as a whole, makes sure the software remains in

line with the goals and non-goals of the project.

3.1.1 Core Requirements
3.1.1.1 Functional Requirements

• Secure encryption of messages with PGP on an IM-P

– Ability to turn off encryption of messages at will

• Secure decryption of messages with PGP on an IM-P

– Ability to turn off decryption of messages at will

• Detection of recipient and their key using the name on an IM-P

– Ability to change the recipient’s name manually if it is defective

• Detection of errors when the recipient name is defective, either:

– if the name is ambiguous

– if the name cannot be found (i.e. when using a nickname)

• Interfacing with at least three different IM-Ps

3.1.1.2 Non-Functional Requirements

• Encryption/decryption should happen in a speed that is considered ‘almost instantaneous’

(< 500ms).

• Should use open-source software for security reasons

3.2. ARCHITECTURE 19

– People can analyse and improve any security vulnerabilities

– People can audit for themselves that the software is not malicious

• Should keep platform-specific code at a minimum in order to improve code re-usability

• Should allow users to interface (send encrypted messages) with their IM-P of choice

3.2 Architecture

Figure 3.1: Differences in setups and how the software was designed to work on all of the
combinations of these scenarios. The yellow labels indicate parts that can change depending on
a single user’s configuration, and the blue labels tell the common elements that are leveraged to

produce modular and interchangeable code.

In order to achieve the most platform-agnostic approach, the software architecture needed

to be designed to be as modular and extensible as possible. Targeting multiple platforms is not

an easy task. Any combination of IM-P, browser, Operating System (OS), and hardware should

be supported. Simply creating static code for all of the combinations is entirely infeasible, so an

alternate approach was devised. This led to partitioning the design into four main categories, as

seen in Figure 3.1. In this design, any of the categories can change based on user setup, and the

software should still be usable as before. This leads to a modular design that is easy to change and

update to adopt more categories as time passes.

The choice of programming languages was also heavily influenced by portability. JavaScript

(JS) was chosen for the browser environment (IM-P and Browser in Figure 3.1) because of its

high availability across modern browsers, and many websites written with JS. The extension was

written in ECMAScript 2017 (ES8) which is supported by most browsers in 20201.

The back-end code was written in Go, which is an open-source language designed to be

portable. Go was chosen because it is fast to write, strongly typed and memory-safe, and compiles

to most used platforms. It also has parallelism features which make scaling extremely easy, and

handles UTF-8 encoding natively. By default, Go also statically links all its binaries, this can of

course be disabled. However, for maximum portability, statically linking the libraries to the binary

is beneficial here, mainly because we are only looking at a single binary.

Dealing with security-critical applications, I did not want to deal with concerns of memory

management, for example, when transporting plaintext for encryption to GPG. This is handled by

Go’s practical scoping and garbage handling.
1https://kangax.github.io/compat-table/es2016plus/

https://kangax.github.io/compat-table/es2016plus/

3.2. ARCHITECTURE 20

3.2.1 Morpheus

The software that provides encryption/decryption for modern IM-Ps is hereinafter referred to as

Morpheus. It relates to the movie Matrix, where a character called Morpheus gives a choice to the

main character — to either expand their reality to face the harsh truth, or to continue to live in the

old world in blissful ignorance2.

At its core, Morpheus has a simple design. The general idea is to act as a ‘barrier’ between

the user and the IM-P, encrypting and decrypting messages seamlessly as the user sends them and

receives them respectively (See Figure 3.2).

The user still chooses to use the IM-P, but only for message delivery. Any message contents

are encrypted for transmission and can be decrypted by the intended recipient only. This means

that data the IM-P interacts with is always encrypted.

As Morpheus is designed to ‘extend’ the functionality of regular IM-Ps, it is possible to only

manipulate the input and output of the IM-P without touching any of the application code itself.

This approach has many positive indications in terms of data security and privacy. For one,

the messages cannot be read without the private key that the intended recipient has in their posses-

sion. Any Man-in-the-Middle (MitM)-attack would intercept encrypted messages that are useless.

Secondly, any data breach that manages to get access to the conversation history will again yield

a set of useless encrypted messages.

The data retention time is brought down from s to min(s,k), where s is the realised data reten-

tion (e.g. regulated by GDPR, prone to mistakes given a globally deployed application, ultimately

infinite given a data breach), and k is the rotation frequency of one’s encryption key pair3.

Figure 3.2: General architecture of Morpheus. The software acts as a second layer providing its
own end-to-end encryption, regardless of whether the IM-P has one or not.

3.2.2 Icelos - Morpheus Client Daemon

Browser extensions are sandboxed and have no information over any applications or processes

running on the machine. They also do not have access to regular OS resources such as a filesystem

2This falls in line with one of the core design goals — we should not enforce security to the user. They can choose
to ‘be secure’ or not to do so. After all, the status quo is the latter.

3It is worth noting here that the rotation frequency of PGP encryption keys is traditionally quite infrequent. See Key
Exchange in Section 6.2 for alternatives.

3.2. ARCHITECTURE 21

or execution capabilities. This would make it extremely difficult to communicate with GPG, even

if it were running on the client machine. One of the very few pathways of inter-process commu-

nication is using listening HyperText Transfer Protocol (HTTP) ports on the local host to process

requests sent using JavaScript’s own HTTP libraries. This can then further be encrypted using

TLS.

Figure 3.3: Architecture of Icelos. The inter-process communication between Morpheus and
Icelos can be handled using JSON on an HTTP port, and optionally encrypted with Transport

Layer Security (TLS).

Unfortunately, GPG does not have an HTTP endpoint to communicate with, so a message

broker is needed. This broker is called Icelos; it interacts with Morpheus using the JavaScript

Object Notation (JSON) format that is transported over HTTP requests, and subsequently commu-

nicates directly with the GPG UNIX process (See Figure 3.3).

There exist PGP implementations for entirely JavaScript, meaning it could have been possible

not to use an extra piece of software such as Icelos for encryption and decryption. However, due

to the way browser extensions are isolated from the rest of the machine, this would have led to an

awkward situation of asking the user to ‘upload’ their private key into the extension. While this

could technically be handled securely, in an internet or web context, it feels very wrong to ask

people to move their private keys anywhere, let alone upload them somewhere.

Additionally, using an implementation running entirely in JS, we would lose all hardware

support for authentication and encryption methods described in the last column of Figure 3.1. For

example, the support across browsers of communicating with hardware keys (such as YubiKeys)

is still sketchy in 2020.

Using a separate message broker allows us to utilise the users’ own GPG setups fully. En-

cryption and decryption work seamlessly using Icelos as a broker between the browser and GPG,

as seen in Figures 3.4(a) and 3.4(b). The feature set is restricted only by GPG, not by any imple-

mentation of OpenPGP in JS, as we would have to simulate GPG to reach full feature parity. For

(a) Encrypting a plaintext with Icelos. (b) Decrypting a ciphertext with Icelos.

Figure 3.4: Icelos Architecture in relation to Morpheus Browser Extension.

3.2. ARCHITECTURE 22

example, if a user has set up a key rotation system, this works out of the box with Icelos as it lets

GPG to choose the keys to decrypt with, and encrypts with only active (non-revoked) keys. Any

user setup that allows for GPG encryption/decryption already on their client machine will work

with Icelos.

Implementations such as OpenPGP.js4 could be used as a backup for encryption; users would

only need to upload their recipient’s public key in order to encrypt messages to others without a

broker such as Icelos. However, this is such an extreme situation that it was decided not to be

implemented.

Icelos can also run on Docker for people that do not have an active GPG setup. This allows

people to easily mount a private key directory for key generation and the retaining of recipient

keys, and run Icelos and GPG in the same container on Docker. The same setup can also be used

to generate the browser extension on the local machine in order to make compilation easier.

Docker enables Morpheus to be used on any major OS that can run Docker, including but

not limited to Windows, Mac and Linux. The only requirements are a modern browser that can

support extensions, and an open HTTP port to establish communication between the extension and

the docker container.

3.2.3 Encryption on Chat

As the encryption targets a generic chat platform, we need to be careful with the encryption format.

As encryption happens on the binary level, its output is often garbled binary as well. Sending

binary characters on an IM-P is not reliable, as it may contain non-printable characters and may

be formatted in strange ways, such as some sequences of characters converted to emoji.

Additionally, IM-Ps can place arbitrary restrictions on the length of the transmitted mes-

sages. This means that when receiving messages, the message may consist of multiple parts. The

encryption and decryption algorithms should take these details into consideration.

The PGP armoured Base64 format was chosen because of its simplicity. Messages are en-

crypted into character sequences containing characters A-Z, a-z, 0-9 and a few special characters

such as + and /.

3.2.4 Interfacing with IM-Ps

Interestingly, many companies with Instant Messaging Services do provide some form of a web

IM-P to communicate with users, accessible using a modern browser. These web services are

easier to interface with compared to a fully closed-source binary application. This is because they

are all structured using HTML, with a JavaScript runtime that the browser executes.

Any modern application uses a tree-like structure for creating and manipulating user inter-

faces. This is true for web applications as well — the element structure is stored within the Data

Object Model (DOM) and accessible within JavaScript. For example, the simple interface struc-

ture shown in Figure 3.5 could be described by the following code block in HTML:

4https://github.com/openpgpjs/openpgpjs

https://github.com/openpgpjs/openpgpjs

3.2. ARCHITECTURE 23

Figure 3.5: Simple DOM Structure.

<html >

<body >

< header > T i t l e < / header >

< s e c t i o n >

S e c t i o n

<p> Parag raph </ p>

<p> Parag raph </ p>

</ s e c t i o n >

< f o o t e r > Foo te r < / f o o t e r >

</ body >

</ html >

The structure of an HTML document is usually manipulated in the form of ‘queries’ — these

are simple hierarchical statements that tend to return a single object or multiple of them. This

allows for building modular applications and only focusing on manipulating content that is needed

to be touched. For example, if we wanted to manipulate the header, our query might be: header,

body > header or even html > body > header. It all depends on the amount of accuracy

the programmer wants (if a document would somehow have two bodies, body > header would

match both). These queries would give us a reference to the header object, like in Figure 3.6(b).

An arbitrarily complex querying rule will still return the same elements even if some of the

complete DOM layout changes. The querying rules allow for many more complex selections

and can be extremely handy when selecting, for example, all the messages in an application (see

Figures 3.6(c) and 3.6(d)).

3.2. ARCHITECTURE 24

(a) A simple DOM structure. (b) The element in red is returned when query-
ing for title, body > title or html >
body > title.

(c) The element in red is returned when query-
ing for section or title + section or body
> section.

(d) A query such as p or section > p will re-
turn all of the paragraphs, or the first one if only
looking for one element. Note that section >
p would only return paragraphs inside the sec-
tion element.

Figure 3.6: DOM element structure and querying.

3.2. ARCHITECTURE 25

(a) Simple messaging layout, containing all
the ‘Core Elements’.

(b) Complex messaging layout. Note how, despite the increased com-
plexity, the Core Elements still exist. This is true regardless of IM-P
(for most of IM-S providers).

Figure 3.7: Element structure between IM-Ps. The simplified versions of Telegram Messenger
and Facebook Messenger are presented on the left and right, respectively.

3.2.5 Core Elements

Another interesting observation to make is that all IM-Ps follow a finite set of common rules when

it comes to setting the layout. By studying and comparing the layout of two arbitrary instant

messaging apps (Figure 3.7) we can see that some ‘Core Elements’ remain the same regardless of

the overall layout.

Below is a short list of the most essential Core Elements in Morpheus’ design. For imple-

mentation details see Implementation in Chapter 4.

3.2.5.1 Bind Input

The Bind Input is an element used to write a message to the recipient, for example, the ‘Input

Field’ element in Figure 3.7. Morpheus needs to ‘bind’ itself into this input for encryption, hence

the name. The input is cloned, and all of the original functionality relating to the IM-P is stripped

away; the user will always type into the Morpheus’s input field.

Before sending the message, Morpheus encrypts the plaintext and pass it to the Encrypted

Data element (usually the same input, see Section 3.2.5.2). This ensures that the web application

will not know the plaintext, and only deals with the ciphertext. The unencrypted input is then

programmatically sent input events to simulate the user typing the ciphertext and sending it to the

recipient. Because the secure input does not have any events attached to it, this also successfully

reduces the amount of metadata sent by the user in the form of any typing patterns or simply

information when the user is typing.

3.2.5.2 Encrypted Data

Sometimes the encrypted message is not stored in the input that wrote it. This element stores the

encrypted message before firing the Bind Input’s send action. Especially in the case of websites

that use custom JavaScript frameworks, the element containing the data can be different from the

3.2. ARCHITECTURE 26

element that the user types into.

3.2.5.3 Message Element
The Message Element is a query which returns all of the messages in a web page, for example,

the beige messages ‘One’ and ‘Two’ in Figure 3.7(b). The structure allows this message element

to be as complicated as needed — Morpheus only needs to decrypt any encrypted text inside this

element.

3.2.5.4 Message Feed
The Message Feed is an element which contains Message Elements, for example, the blue con-

tainers above the Input Fields in Figure 3.7. This Message Feed is listened on for any changes.

Listening allows for the automatic detection of new encrypted messages that can then be decrypted

accordingly.

3.2.5.5 Message Text
Usually the Message Text and the Message Element are the same. Sometimes there are cases that

the Message Element is so complicated that we need an additional query to find the text within.

This also affects which element gets its contents replaced (when displaying decrypted plaintext in

place of the encrypted message) if the element is more complicated.

3.2.5.6 Recipient Hint
The Recipient Hint element will contain text that determines (a portion of) the PGP recipient string

for Morpheus. Usually this is the element that contains the recipient name, for example, the light

blue element that contains the name ‘John Doe’ in Figure 3.7. This recipient string can be modified

in case the user has overridden the keys for this name. This hint will be used to guess the recipient

keys — if keys are not found, the user needs to input them manually.

3.2.5.7 Resetter
Some websites contain JavaScript to update the DOM without reloading the underlying page.

It is practically impossible to detect these changes — the Resetter element will manually reset

Morpheus when they are interacted with. For example, a Resetter element in a chat application

would be clicking on a different ‘chat’. This is expected to change the contents of the Message

Feed, Recipient Hint, and other Core Elements. It is important to note that the DOM elements can

remain the same — only their contents change. When this happens, Morpheus needs to refresh its

data, and this is done via the Resetter elements.

3.2.6 Browser Extension Design
Naturally, the web extension works the same way across all modern browsers that support web ex-

tensions. This is ensured by the WebExtensions API5, which is maintained by the World Wide Web

Consortium (W3C)6. The draft is not yet completed, which means the Web Extensions API has

a few interesting quirks to consider, especially when developing for multiple different browsers.

You can read more about these in Section 4.2.3.

The browser extension consists of various parts working together. Browser extensions usually

have multiple different scripts with different scopes and privacy. The extension by default does

not have access to any of the webpages that the user visits.

5https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
6https://www.w3.org

https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/WebExtensions
https://www.w3.org

3.2. ARCHITECTURE 27

Figure 3.8: Architecture of the Morpheus browser extension.

However, it can explicitly request this and inject another script onto the web page. This script

is called an injection script or a content script, depending on the way it gets injected on the web

page. In Morpheus’ case, it will hereinafter be referred to as the Inject Script.
There are three main scripts that the Morpheus Browser Extension contains: the Background

Script, Popup Script and Inject Script (See Figure 3.8). These moving parts communicate together

with messages that behave very similarly to JavaScript Object Notation (JSON)7. Below we will

talk briefly about each.

3.2.6.1 Background Script
As the name suggests, the Background Script runs in the background when the user is browsing the

Internet. The Background Script acts as the primary source of truth for the rest of the extension. It

is wholly isolated, running in its own container, and can only serve as a message broker between

other scripts.

The Background Script is in charge of saving session data and brokering requests of encryp-

tion and decryption to Icelos8 and back. It keeps information about different tabs and the previous

recipients for each request, so that encryption can happen as soon as the page is navigated to.

3.2.6.2 Popup Script
The Popup Script handles all the logic that relates to the visible icon of the extension. Due to

the way browser extensions are designed, clicking of the icon will grant Morpheus special access

to the current webpage that the user is looking at. Any time the icon is clicked, Morpheus will

attempt to inject the Inject Script onto the website. Without this access, the content script could

7JSON is a data-interchange format designed to be both human- and machine-readable. https://www.json.org/
8Explained in Section 3.2.2.

https://www.json.org/

3.2. ARCHITECTURE 28

not be injected onto the web page, and the extension would be completely isolated from the rest

of the webpage that the user is browsing.

This can be overcome by using a special permission for the browser extension where Mor-

pheus is active at all times. Naturally, this can be a concern to some users, so this can be disabled

when creating the extension.

The Popup Script also handles all the promise chains for updating user keys, and changing

settings of the extension. Any setting changes will be propagated back to the Background script

and will take effect immediately.

3.2.6.3 Inject Script
The Inject Script is a script that is added on top of the rest of the DOM in any life cycle of the

website. It is the only script that can interact with the DOM of the website it is on, and still has

limited access to the rest of the scripts on this website. The Inject Script takes care of displaying

Morpheus-specific elements, sending messages for encryption/decryption and dealing with Core

Elements.

It has no concept of PGP, and will only be told whether the recipient is ‘Verified’ (success)

or ‘Not Verified’ (failure) when dealing with recipient verification. This ensures no information

about the user’s PGP set up is leaking to the web app.

3.2.7 Recipient Validation
One of the perhaps intuitive but technically non-trivial tasks is to choose the right keys for each

conversation. A recipient of a message in PGP terms is the person this message is encrypted for.

The message does not contain any information on who to deliver it for; rather the delivery is done

by some other system entirely. This separation causes a problem; how do we choose which keys

to encrypt for, given we are talking with a specific person on the online platform?

Figure 3.9: Morpheus recipient validation.

Fortunately, PGP keys are always embedded with user information such as first name, last

name, and occasionally other details such as e-mail address or a comment. These keys can be

queried from GPG using any substring of the user information.

Recipient validation is done via simple steps. First, the recipient hint is normalised using

simple transformation rules into a string that can be used to query GPG9. Next, this recipient guess

is used to query GPG for the recipient. The keys for this recipient are retrieved and saved in the

extension for encryption. If the query does not yield recipients, or the query yields an ambiguous

result, Morpheus will display an error next to the recipient string and an invalid recipient.

9This also includes any user-defined transformations, for example, if the user is talking with ‘Cathie’ (nickname)
but the key is named ‘Catherine‘ (full name).

Chapter 4

Implementation

Knowing the design is one thing; implementing it is another. Unfortunately often with software

projects, only after you implement software you realise how you should have implemented it.

In this chapter, we delve deeper into how the implementation of the system designed in Chap-

ter 3 happened, and reflect on how it went. Overall the design of the system did not differ too much

from the realised implementation, but there were some faced difficulties and changes of approach.

4.1 Development Setup
Large portions of the project were developed using modern development tools like version control

and a personal IDE setup. The version control was handled using Git, with a remote repository

on GitLab. Every commit was tested before pushing into the repository to ensure that a working

version remained on the master branch. I also kept separate backups on another Git repository just

in case.

Linux was used as the main OS for development, as this is what I’m most comfortable de-

veloping on. I did initially want to test on more platforms such as MacOS and Windows, but

unfortunately given the circumstances had to drop those plans. In theory, the software should

work on all platforms. However, this has not been tested yet (See section 6.1.3).

The IDE setup was a combination of UNIX tools as well as the code editor Vim, which was

used to write all of the code. Vim supports features such as spellchecking, syntax highlighting,

autocompletion, macros, unlimited buffers and a set of handy commands to speed up development

dramatically.

In the Project Planning stage, there was a clear cut between design and implementation,

but most of the implementation phase was done using an agile approach. Meetings with the

supervisor were held weekly, and during this time, the previous week’s goals were ticked off and

new week’s goals gathered.

This agile approach ensured a quick feedback loop and development cycle. Any concerns and

issues could be addressed quickly before working too much on the wrong premise. Overall, even

though implementation differs slightly from the design, much of the design elements persisted

throughout, giving confidence that the design was sound from the start.

4.2 Morpheus
This section will first discuss the implementation details of the Morpheus Browser Extension, then

Icelos, and then discuss how they work together. The Extension is written in JavaScript and has

4.2. MORPHEUS 30

layout and styling defined using HTML5 and CSS.

4.2.1 Core Elements

Like described earlier, the concept of Core Elements was quite fuzzy in the design phase. Defining

Core Elements was a challenging task from the software design standpoint, as so many different

layouts of IM-Ps are to be targeted.

Fortunately, during implementation, the concept solidified. Often the addition of one IM-P

created the realisation that either the current set of Core Elements was not entirely sufficient, or

was a simplification that needed to be further generalised. Eventually, the set was diverse enough

to be able to add more modules without further modifications to the generic code.

An example of this is the ‘Input Field’ element that was assumed to both listen to user input

events and contain the input data, but it turns out some web interfaces have a separate element to

hold the data of the input field1. Changing this retroactively was not impossible, but did bring the

design of a ‘Bind Input’ back to the drawing board a few times throughout the implementation

process.

4.2.2 Promises

The asynchronous nature of these message chains prompted the implementation to be done with

Promises2: these are proxies for the storage of asynchronous values within JavaScript.

A promise has three states: it can either be pending, fulfilled or rejected. The promise is

returned synchronously as an object, but will contain code to execute in case it gets fulfilled or

rejected. This allows for waiting for a specific event ‘asynchronously’, even if the code is not

necessarily such.

Any pending promises are sent when, for example, web requests are waiting for a response.

This way, we can decrypt multiple messages at the same time. The extension can process and

queue all of those messages in at the same time using promises, thus ensuring that all of them will

either be fulfilled (success) or rejected (error) in the future.

Similarly, error scenarios are handled using promises. It is useful to think that any promise

that emerges can also fail in an unexpected way; thus, the failure state needs to be clearly de-

fined. This can consist of displaying an error message (for example when decrypting encrypted

messages), retrying the request, ‘bubbling’ the promise upwards, or a similar action.

4.2.3 Messaging

The messaging system of Morpheus is divided across the different scripts, and is handled using

Promises.

The Web Extension API is not quite finished, and thus browsers use slightly different non-

conforming approaches implementation-wise. This makes for interesting quirks when developing

an extension for multiple browsers at once. For example, in the Chrome browser, messages are still

handled using callbacks3, and thus requires a polyfill4. Similarly, some individual changes are yet

1For more information on the implementation in regard to the web platform, see Section 4.4.
2https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/

Promise
3https://developer.mozilla.org/en-US/docs/Glossary/Callback_function
4https://github.com/mozilla/webextension-polyfill

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Glossary/Callback_function
https://github.com/mozilla/webextension-polyfill

4.2. MORPHEUS 31

Figure 4.1: The full messaging system of Morpheus and its aforementioned components. The
light red rectangles depict messages received by that module.

to be made (such as the usage of the keyword browser instead of chrome for web applications),

and are again fixed with a polyfill.

Inside the extension system, a sender of a message is not necessary to be disclosed; for ex-

ample, the Popup script displays an error every time the Error message is received, regardless of

the origin. Similarly, any message telling the Inject Script to enable automatic message decryp-

tion will be processed regardless of the origin. Any messages passed within the extension are

always internal messages, and will automatically be considered trusted as only a component of

the extension has access to these messages.

4.2.4 Context Separation

The Icelos process never sends messages back to the rest of the extension — instead, it acts as a

server, directly serving any message requests coming from the Background Script. The behaviour

when handling errors is mimicked, so while in reality Icelos’s messages are processed partly by the

Background Script, it is well within reason to discuss Icelos as one part of the extension receiving

messages in this sense.

In the same way, messages passed back and forth between the Inject Script and the rest of the

extensions are actually brokered by the Background Script: the Inject Script does not have access

to the internal messages; instead, it needs to use tab messages to communicate with the rest of

the application. This enables for complete separation of concern, where the Inject Script does

not have any more information than it needs. It does not know anything of the keys Morpheus is

encrypting for, nor details of any errors that happen — only whether an error has happened or not.

That is, in Figure 4.1, the only senders privileged to send on this messaging network are

the Background and Popup scripts. The Inject Script messages are sent on behalf of Inject by

Background (only a subset of messages), and messages via Icelos are passed via Background as

4.2. MORPHEUS 32

well. This minimises coupling between the scripts.

Additionally, as all Morpheus Browser Extension parts share the same code for passing mes-

sages around, the format is also shared. Messages are passed mostly in the extension message

format, with the exception of the Background Script communicating with Icelos via HTTP/TLS

using JSON. Icelos then uses a separate UNIX socket to communicate with GPG to encrypt/de-

crypt arbitrary messages.

4.2.5 Modules
Morpheus has been implemented in the most generic way possible, where the Injection script only

deals with DOM ‘Core Elements’ described in Chapter 3. Separate modules are needed to detect

these Core Elements from a webpage. In the implementation, the injected Morpheus script will

detect the URL of the webpage, and if it is detected to belong to a module, Morpheus loads this

module.

The module is picked in the Site Detector of Morpheus using Regular Expression rules. For

example, when the user navigates to https://web.telegram.org/, the Injection script will load

the ‘Telegram Web’ module, which contains all the information required to inject Morpheus on

this IM-P.

This information is mostly a list of queries to reach the Core Elements, and Morpheus knows

how to handle the rest (decrypting an encrypted message, encrypting an input, showing a lock icon

in the DOM...).

i f (S i t e D e t e c t o r . C u r r e n t () == ’ t e l e g r a m−web ’)
Morpheus . SetModule ({

/ / Make t h e i n p u t s look c l o s e r t o Telegram Web’ s s t y l e .
customCSS : ‘< s n i p . . . > ‘ ,
b i n d I n p u t R e p l a c e : f a l s e ,
b i n d I n p u t s : [

’ . c o m p o s e r _ r i c h _ t e x t a r e a ’ ,
] ,
messageFeeds : [

’ . i m _ h i s t o r y _ s e l e c t e d _ w r a p ’ ,
] ,
messageElement : ’ . i m _ h i s t o r y _ m e s s a g e _ w r a p . im_message_body ’ ,
messageText : ’ . im_message_ tex t ’ ,
r e c i p i e n t H i n t s : [

’ . t g _ h e a d _ p e e r _ t i t l e ’ ,
] ,
r e s e t t e r s : ’ u l . nav > l i . im_dia log_wrap ’ ,

}) ;

Figure 4.2: A code snippet of a typical Morpheus module. This is the only part of the code in
Morpheus that is specific to the Telegram Web IM-P.

The usage of modules and a generic approach to the rest of Morpheus dramatically reduces

the amount of code required to implement Morpheus on a single IM-P (See Figure 4.2). Both

in terms of implementation, and subsequent re-implementation (if, for example, the platform has

a dramatic change of layout), having fewer than 20 lines of code to change per IM-P is an

4.2. MORPHEUS 33

extremely versatile approach.

As the modules are JavaScript-based, and are instantiated within the DOM environment, the

queries can also be generated when the page loads. This allows Morpheus to combat hostile IM-Ps

that may change the query names to prevent modifications by other scripts — however, there has

not been a need to demonstrate this with the current implementation of Morpheus.

4.2.6 More Efficient Querying
The content and layout of an IM-P on the web could change in a moment’s notice. Because

Morpheus is a system that attempts to interface with a platform without a clear and defined API, it

is vital to design the DOM queries in such a way that they are the most resilient to change. While

this does not mean Morpheus will always continue to work after a substantial layout change in an

IM service, it does:

• Minimise the probability of such layout changes affecting Morpheus’ functionality in a

detrimental manner

• Make it easier to discover and re-implement the module after this change5

For example, a query that bases its success in the knowledge of a Message Feed core element

in regard to its position relative to the document body, the smallest change in the form of the entire

webpage will mean the module has to be changed. If instead a smaller proportion of the body was

used to identify the queried element, any changes outside of this proportion would not affect the

functionality of Morpheus. Even better, if there was another way of identifying the target DOM

element without basing on information where it is, only a critical change to the element itself

would prompt for changing the module.

Accessible Rich Internet Applications (ARIA) attributes are one example of an efficient

querying mechanism. ARIA is a set of unique HTML attributes defined to help accessibility

software (such as screen readers) to focus on the important content on a given website6. This is

defined in an Resource Description Framework (RDF)7 and is designed to make complex websites

(somewhat) computer-readable. This provides an exciting alternative approach to targeting Core

Elements, as the accessibility concerns of a developer of software for a large company can allow

software such as Morpheus to make use of these features.

An example of this can be found in Facebook Messenger. The message feed has a few aria

attributes, such as: role="presentation" (meaning it is the main content to focus on a page)

and aria-label="Messages" (label read by the screen reader would say ‘Messages’). Looking

at the structure of the document, it is safe to define the Message Feed core element to be the one

labelled by ‘Messages’ in ARIA, as this DOM element will contain the messages somewhere in

the tree structure. If this were not the case, then many screen readers would be broken as well. The

accessibility features of an IM-P can thus be used as an API to access the required Core Elements.

Of course, not all platforms support modern accessibility features. This is why Morpheus has

a hierarchy of querying:

5While not desirable, as long as a substantial layout change affecting the IM-P will take proportionally longer to
implement compared to the time taken changing the query in Morpheus.

6https://www.w3.org/TR/wai-aria-1.1/
7https://www.w3.org/WAI/PF/aria/rdf_model.png

https://www.w3.org/TR/wai-aria-1.1/
https://www.w3.org/WAI/PF/aria/rdf_model.png

4.2. MORPHEUS 34

• ARIA attributes > other attributes > visual attributes

That is, Morpheus will first try to use the ARIA model to identify Core Elements. If that

does not work, it will use other attributes (such as placeholder texts, element IDs) to find the

elements. If even this does not work, it will finally use visual attributes (such as CSS classes) to

find the elements. As visual classes are the most volatile to change on a moment’s notice, they are

obviously the least desirable.

If an element is not found for some reason, only that part of Morpheus will not be functional,

and every other part will try to function as normal. For example, the absence of a Recipient Hint

makes Morpheus unable to encrypt messages, in which it will display an error message instead

of sending an unencrypted message. Morpheus will still be able to decrypt messages, as this

functionality is not affected by the absence of a Recipient Hint.

The error message will prompt the user to input the recipient key manually in the Morpheus

Extension. Morpheus will be very explicit about an input being secure or not being secure8 and

users can still override the functionality if needed. This makes the implementation very resistant

to change, and the extension more usable in different circumstances.

4.2.7 Element Cloning

Figure 4.3: Element cloning in Morpheus, showing an example where a Recipient Hint has
successfully been validated. Note that the old elements are not necessarily destroyed — they are

simply hidden ‘behind’ the new cloned elements.

Morpheus makes modifications to DOM elements. For example, Recipient Hint core ele-

ments will be coloured and tagged based on whether the recipient is valid or not. In order to not

interfere with the functionality of the IM-P, elements to be modified are cloned before modifica-

tion. This allows for easy reverting to the IM-P if Morpheus needs to be disabled (see Figure 4.3)

and does not modify the functionality.

The element that has been cloned can be dealt with in a number of ways. Usually, the easiest

is to simply hide the old elements and only show the new elements, making the old elements

impossible to be interacted with by the user. This prevents accidental typing into an unsecure

input, for example.

Sometimes the IM-P requires the old elements to be in a specific place both in terms of their

DOM position and visibility. Morpheus also allows Core Elements not to be replaced, and the new

elements will appear next to the cloned element. They can then be hidden visually by CSS rules

8See section 4.5

4.2. MORPHEUS 35

(a) A whole encrypted message. Note the tokens
wrapping the encrypted data.

(b) A chunked encrypted message. The tokens are still intact,
and can be retrieved even if a single message does not contain
an ending token.

Figure 4.4: A potential chunking scenario of an encrypted message, potentially enforced by a
character limit or a similar delivery rule.

in the module, while still keeping the IM-P functionality intact. This is required for example if the

Encrypted Input element has specific JavaScript events that the web application is listening to.

In order to prevent the user from accidentally typing into the old element, all user events

are projected into the secure input instead. For example, in Facebook Messenger, clicking on

the Message Feed will focus the (unencrypted) input element. Morpheus is listening for the Focus

event of the unencrypted input, and will forcibly focus the secure input instead. This will mean the

user will always type into the secure input, and the encrypted message will be programmatically

injected into the unencrypted input.

4.2.8 Message Chunking
A message can be limited in character length due to transport restrictions. For example the SMS

protocol historically only supported messages of 160 characters, and the length of a Twitter mes-

sage used to be only 140 characters. In modern IM-Ps, these restrictions are much higher and not

publicly advertised, as the platform simply chunks a large message into multiple messages if the

length is too long.

This can, however, have detrimental effects on sending encrypted text. An encrypted text

data is often much longer than its plaintext counterpart, and sending a lot of data can reach the

character limit in a message.

Without precautions, this could lead to an encrypted message being not decryptable. For

example, a chunked encrypted message in Figure 4.4 could span any number of messages. Mor-

pheus utilises a custom token system to enclose the PGP data in, with clearly defined start and end

tokens.

There are two tokens: Encrypted:[and] that the ciphertext data is enclosed in.

If message chunking has not been observed, then Morpheus will discover that both the start

token and end token are in the beginning and end of the same message, respectively (Figure 4.4(a)).

Morpheus can simply decrypt the contents of this message enclosed in these tokens.

If message chunking has been observed, then there is no end token to be discovered in the

message (Figure 4.4(b)). This will cause Morpheus to keep reading messages until an end token

is discovered. In the figure, this would mean reading the two consecutive messages, and finally

discovering the end token in the third message.

4.2. MORPHEUS 36

In an unlikely event that the rest of the message had been chopped off, Morpheus will stop

reading subsequent messages if:

• Another start token is discovered

• Message data does not look like encrypted data (armoured base64)

• Too many messages have been read

The broken ciphertext message will then not be marked as decryptable. This of course bases

assumption on the ordering of the messages as they are received.

If message chunking and ordering is a concern when sending messages, it could be possible

to identify the maximum message length and chunk the messages beforehand with an ordering

‘token’ attached. However, this was never a concern with the IM-Ps that Morpheus was interfacing

with, so the feature was decided not to be implemented.

4.2.9 Message Observer

The Message Observer will attach to a Message Feed Core Element and listen to DOM changes.

Any time the DOM changes, the Message Observer will see if there are any new Message Text

Core Elements. These new elements will automatically be processed by Morpheus, and scanned

for encryption tokens.

Figure 4.5: Attached User Controls that are displayed as lock icons next to encrypted messages.
Clicking on a lock icon will decrypt the corresponding message. The Message Observer works

both with Morpheus messages (above) and traditional PGP messages (below).

If encryption tokens are found, Morpheus will mark the message as ‘decryptable’, and attach

user controls next to this message (Lock icon in Figure 4.5). All the other messages are left

untouched for performance reasons. If automatic decryption is enabled, then after marking these

messages they will be decrypted in sequence.

4.3. ICELOS 37

4.3 Icelos
Here we discuss the implementation details of Icelos. Icelos runs inside a Docker container and is

built using Go. It listens on a network port and brokers requests from the web extension into GPG.

4.3.1 HTTP Messaging
As web extensions are very limited in how they can access the host machine, HTTP messaging

was chosen to be the main form of communication. This also works well cross-platform, as a port

can be opened on all Linux, Windows and Mac machines.

Figure 4.6: Encryption process via GPG using HTTP POST requests. The colour changes repre-
sent change in layers of abstraction. While Promises are a part of JavaScript, their asynchronous
nature makes it easier for them to be seen in their own layer. The decryption and key fetching

requests work in a similar fashion.

The HTTP messages are all POST requests with a JSON body. Depending on the context,

the response can also be serialised JSON or a single string (for example when encrypting con-

tent). Transport Layer Security (TLS) can be used in encrypting the communication for additional

security on the host machine. The diagram in Figure 4.6 shows the process in detail.

The JSON body will be serialised in the Morpheus Browser Extension, and passed over HTTP

POST into Icelos. The asynchronous nature of the POST request will be represented as a Promise

in JavaScript, which will be fulfilled when the POST request responds.

Icelos will then listen to the POST requests, deserialise the request body into its own struct

format, and pass the request to GPG if needed. The backend will then create a response based on

how the GPG exchange went, and respond over HTTP back to Morpheus with the response data.

Morpheus will then look at the HTTP status code and either accept (2xx code) or reject (4xx

– 5xx codes) the promise based on the response status. The response data is often parsed further

4.4. INTERFACING 38

in the Background Script, and then passed on via the internal messaging (see Figure 4.1) to the

modules that require this information. This is important in order to keep data from leaking into the

scripts on the webpage (for example, when telling the Inject Script whether key verification failed

or succeeded, without disclosing any information about the GPG keys or recipients).

4.3.2 Docker
The HTTP messaging can be done through Docker as well. The only difference is that ports need

to be opened and mapped via Docker. This can be left on by default or configured easily by users

when installing the Docker container.

Icelos on Docker also allows users to mount their GPG directory into the Docker container

rather than interfacing with their own GPG executable. This can be more secure if users want to

control what kind of executables run as the specific user; the GPG Icelos runs can simply encrypt

and decrypt inside a separate container, only interfacing with the user’s keyring via a volume when

needed.

4.3.3 Service
Icelos is also tied to a Systemd Service file which can be enabled to make Icelos run automatically

as a daemon9. This makes the long-term usage of Morpheus less painful as Icelos does not require

to be started every time Morpheus is wanted to be used.

The HTTP port can be kept open, as in order to decrypt or sign messages the private key

needs to be accessed, and GPG will ask for a password. Thus, even if unattended, Icelos cannot

decrypt messages without user consent. Obviously, the configuration settings of the GPG Agent
determine the security of the user’s GPG keys — if the password is set as not required, then any

process could decrypt messages via Icelos. See Section 5.2.2 for more information about possible

attack vectors.

4.4 Interfacing
This section describes the challenges in interfacing with arbitrary IM-Ps and how the browser

extension overcomes them.

4.4.1 Inject Script
The Inject Script is the only part of Morpheus that interfaces with the web page. It runs under the

same privileges as the rest of the Web App scripts do, and thus is not allowed to access any data

it does not need. For example, data that would potentially tell about the GPG setup, such as key

data, is never passed to the Inject Script.

The Inject Script can be appended into the webpage in two ways, as seen in Figure 4.7.

The first way is perhaps the more intuitive, where Morpheus is ‘always active’ like some other

common web extensions such as AdBlock. This injects the script onto every page that the user

visits, regardless of whether Morpheus would actually be useful on these pages. It also requires

the content_scripts permission on all the URLs that the user visits, which shows to the user

as a request that the extension wants to ‘Read and access all data on all of the websites’ that
the user visits. Understandably not all users are happy to consent to this, which is why there is

another way to get the same permission.

9A daemon is a program that runs unattended in the background, often starting at boot time.

4.4. INTERFACING 39

Figure 4.7: Two different pathways that the Morpheus Browser Extension can access and inject
scripts on the webpage. Do note that the Background Script will keep running regardless of the

permissions, but without them it will not be able to access any web page data.

Another way that the Inject Script can be appended to the web page is the activeTab per-

mission. This waits for the user to click the Morpheus extension icon to grant the permission to

inject the script onto the webpage that the user is currently visiting. The permission only stays

for the duration of the browsing, and will need to be granted again, but the user does not need to

accept the permission for full read access when installing the extension.

After injection, the script will evaluate which website it was injected on, and send a status

report back to the Background Script. The Background Script will then evaluate using the Site
Detector whether any modules need to be loaded.

Once a module has been identified, the Inject Script will then apply all of the queries inside

this module and retrieve and do modifications to the corresponding Core Elements. This includes

any cloning of elements, attachment of Message Observers and so on.

4.4.2 Reverse Engineering
As the IM-Ps often do not have clearly defined APIs to interface with, developing a Morpheus

module can be close to reverse engineering how a web application works. For example, it is

important to know which elements are receiving input events in order to simulate keystroke events

programmatically to send a message. Some IM-Ps may send the message on the input event;

others may listen for a keydown event when the Enter key is pressed.

It is thus important to devise an ‘algorithm’ in the web application to sending a message pro-

grammatically. This essentially consists of steps required in order to send a message successfully,

regardless of the message contents. For example:

• Clear Bind Input value

4.4. INTERFACING 40

• Set Bind Input value as ‘Test Message’

• Fire change event on Bind Input

• Fire keydown event on Bind Input

If this algorithm consistently sends ‘Test Message’ to the recipient, it can be used in Mor-

pheus to send encrypted messages. The module can then be constructed using a select few of

possible event combinations keeping in mind that the message sending remains consistent.

4.4.2.1 JavaScript Frameworks
There are a few common JavaScript frameworks such as Angular and React10, that drastically

modify how the DOM behaves. Modification of native input elements becomes increasingly diffi-

cult as they are often riddled with events, and those events are required to fire in specific ordering

for the framework to work properly.

A great example of this is the Facebook Messenger application, which at the time of writing

uses a custom compositor for text messages. This compositor is an HTML div element with

custom event bindings and content editability. The algorithm for sending a message gets trickier

as the compositor expects all events it receives to modify the DOM, and vice versa. That is,

keypresses are required to mark the div as nonempty, and only a nonempty div can then be used

to send a message. Programmatically changing the value of the div does not mark it as nonempty,

as no keys have been pressed. Fortunately, the value can be forcibly updated by firing a change

event into the div after changing the content, and then the message sent by using a keydown event.

These algorithms take some trial and error to devise, but fortunately are finite to discover.

The approach used with Facebook Messenger works with any input using a similar React Rich Text

Input framework. Tackling common frameworks will most probably cover most of the required

IM-Ps, but was not immediately done in this project.

4.4.3 Mobile
There was plenty of discussion in developing Morpheus for mobile, but during the development

of the extension, it was decided to be dropped.

Mobile development was deemed a difficult task due to multiple factors:

• No clear unified layout such as HTML to interface with applications (Android uses Java,

iOS uses Swift)

• Mobile applications are much more restricted

• Mobile development requires an entirely new codebase with little reuse

– Even when using a framework that works with JavaScript such as React Native, much

of the extension code would remain unusable on a mobile platform

• There is very limited availability of PGP encryption/decryption mechanisms on Mobile

– Hardware support is limited as well, although some hardware key usage can happen

via Near-Field Communications (NFC) or Bluetooth
10Respectively: https://angular.io and https://reactjs.org

https://angular.io
https://reactjs.org

4.5. USABILITY 41

(a) The Recipient Hint displays that Morpheus has suc-
cessfully determined the recipient from the name. This
is shown by a modified Recipient Text Core Element in
Facebook Messenger.

(b) The Recipient Hint displays a problem in verifying this
user by their name. Care has been taken not to disclose
any sensitive information to the page; instead, the user is
redirected to the extension separate from the page for more
information.

Figure 4.8: Integration with native UI elements in the web app by cloning of the Core Elements
in the IM-P Facebook Messenger.

While mobile is an interesting frontier, it would probably require a double amount of time to

develop. This is further discussed in Section 6.2.

4.5 Usability
4.5.1 Colours & Clarity
The focus of developing the extension was to clarify to the user whenever their messages would

be secure, and when they would not. Instead of having a status quo of ‘you have installed Mor-

pheus, and now all of your messages will be secure’, the extension makes it clear when a secure

communication can be established, and when it cannot. Moreover, when secure communication

cannot be established, the extension will explain the problem to the user.

4.5.1.1 Recipient Verification

The Recipient Hint elements are all looped through and sent over to the Background Script. The

Background Script will try to match the recipient strings with a GPG name, and will report suc-

cess/failure back on each of the Recipient Hints.

The Recipient Hint Core Elements will be cloned and coloured according to the success status

(Figure 4.8). This will ensure that the user understands that the communication with the intended

recipient is secure.

If the display name does not produce a match in GPG, or there is some other problem with

Icelos, a failure message is displayed next to the recipient. This does not disclose any sensitive key

information to the webpage (Figure 4.8(b)), but instead prompts the user to check the extension

for more details on key management11.

4.5.1.2 Unsecure Mode

The user is allowed to choose between ‘secure’ and ‘unsecure’ modes (see Figures 4.9 & 4.10).

After all, the user may have a multitude of reasons to disable encryption temporarily. Perhaps the

user does not deem their message worthy of securing. Perhaps the recipient is unable to decrypt

11See Section 4.5.2 for more information on key management.

4.5. USABILITY 42

Figure 4.9: The cloned secure input that is showing a clear green lock theme and a message
stating that messages will be secure.

Figure 4.10: The same secure input after pressing the lock icon. The theme is now very different
with a red tint and an unlocked lock icon. The message states that messages will NOT be secure,

and the user should press the icon to enable encryption.

the message and is asking the user to send it in plain text.

Regardless of the reason, Morpheus is designed to be simple to turn off momentarily, instead

of forcing absolute security to its users. Care was taken to make sure that the ‘secure’ mode

(Figure 4.9) remains very different visually from the ‘unsecure’ mode (Figure 4.10) in term of

colour, appearance and contrast.

4.5.2 Keys
Clicking on the extension yields a more advanced menu for key inspection and management (see

Figure 4.11(a)). It also shows the status of Morpheus at one single glance. Any keys that could

not be matched for a reason or another are displayed in respective green and red colourings based

on their status (Figure 4.11).

The user can change the settings of Morpheus by clicking the cogwheel icon on the top right.

This shows a straightforward list of settings that can be viewed and adjusted quickly (Figure 4.12).

The user can also input a custom GPG key for any recipient if, for example, the messag-

ing service is using a nickname instead of the recipient’s GPG name (or the other way around).

Hovering over any of the keys will give more information about the key that was matched.

For any key that has been successfully found, the key holder name, e-mail, comment and its

fingerprint will be displayed when the user hovers over the information (Figure 4.13). This allows

the user to verify that the intended recipient is correct, and the key is the right one.

Similarly, for any failed verifications, hovering over the icon will reveal details as to why the

verification failed (Figure 4.14). A key verification can fail due to many reasons, so it’s important

to display this to the user.

Most importantly, this detail of the keys is not passed into the Inject Script, but will instead

only be displayed in the Popup. This is due to additional security of the Popup having its own

environment. The Inject Script does not have the need to know about the user’s GPG setup.

4.5. USABILITY 43

(a) Status message when clicking the exten-
sion icon. All of the keys that Morpheus
has detected on the page are displayed, where
users can now change them if needed.

(b) Status message in a group chat. Mor-
pheus has detected some keys, but some
other keys have a problem. Users are
pointed to which recipients could not be
found, and can change them if needed.

Figure 4.11: Morpheus status message when clicking the extension icon.

Figure 4.12: Settings page of Morpheus.

Figure 4.13: Detailed information about the selected key. The fingerprint is shown inside the
extension to make sure the chosen key is correct.

Figure 4.14: A conflict when multiple keys could be matched.

Chapter 5

Evaluation

Here we describe in detail how Morpheus was evaluated and tested, and how well these tests fit

the requirements described in Chapter 3.

5.1 Overview
In this section, we discuss the maintainability and performance aspects of the software.

5.1.1 Portability
Morpheus works well as an addition to the workflow of sending instant messages, regardless of

the platform it is being used on. It can stay in the background without much intervention, and even

when people do not have a key setup, the unsecure mode allows people to talk while explicitly not

encrypting their messages.

Some users may want to only establish secure communication for a few times, and this is

possible due to the way Morpheus is designed. As it is not required to have Morpheus on the other

side, people are not forced on the platform but start using it of their own will. The hope is that

this will encourage more people to establish better personal security due to the availability of the

extension and the relatively easy setup.

Eventually, as more people adopt the usage of PGP (or any other encryption mechanism),

tools such as Morpheus should become more mainstream, and could even become supported by

IM-Ps. This shift of trust away from the platform to the end-user is the primary goal of Morpheus,

where this project provides one (not necessarily the best) tool to do so.

Like all proofs-of-concept, Morpheus offers an insight into one solution, yet has a lot it could

do differently. It is important to remember that exclusively secure messaging apps already exist

far and wide. As an engineer, it would be easy to simply state that ‘if people wish to be more

secure, they should switch platform’. Morpheus provides a tidy solution that does not interfere

with peoples’ workflows and yet enables them to be more secure if they so wish.

5.1.2 Performance
For Morpheus to work seamlessly with IM-Ps and not interrupt users’ workflows, it needs to

perform well when encrypting and decrypting messages. There is obviously some performance

overhead compared to not encrypting/decrypting at all, which is investigated in detail. As a web

extension, it is also important to note the possible slowing down of page loads if a lot of processing

occurs.

This section describes the performance implications of the aforementioned aspects. For dis-

cussion on the results, please see Section 6.1.4

5.1. OVERVIEW 45

5.1.2.1 Setup

All of the experiments were conducted on a machine with an Intel Core i5-6300U CPU @

2.40GHz, running Linux 5.5.10-arch1-1 x86_64. All experiments on browsers were tested

on both Mozilla Firefox 74.0 and Google Chrome 80.0.3987.149. The browser cache was

disabled for repeated tests.

The experiment setup uses a test HTML/JavaScript/CSS IM application that is running on

a single Go server on localhost, port 8000. This eliminates any network variability which we

are not interested in. All the code can be found on https://gitlab.com/ilmikko/morpheus/

morpheus-test.

All of the CSV data was processed in the R language and the function t.test was used

to retrieve the p-values for each experiment. The graphs were generated from the CSV data in

Libreoffice 6.4.3.2 40.

5.1.2.2 Page Load Times

The hypothesis in page loading is that Morpheus will significantly increase page loading times,

but not for more than 500ms, considered ‘almost instantaneous’ in the Non-Functional Require-

ments.

For page loading, we were interested in three main events representing the stages of page

loading:

• DOMContentLoaded

– Fired when the DOM is ready and all the HTML has finished parsing, but the rest of

the page is still loading.

• Load

– Fired when the page content has loaded, but not all scripts have finished loading.

• Finish

– Fired when all scripts have finished.

The experiment consists of loading the localhost chat application. The application contains

three encrypted messages that are marked for decryption, a Bind Input, and a Recipient Hint of a

known recipient. It was observed how page load times change when Morpheus is disabled, and

when it is enabled.

This was done by using the Network tab of the Web Developer Tools available on both

browsers. The page was refreshed, and the value of the above metrics was noted down. This

test was repeated 50 times.

The test on the Firefox browser yields on average 294.62ms page load times when the exten-

sion is disabled (see Figure 5.1). When enabled, the page load times were on average 383.2ms.

The p-value of the t-test between the data sets is p = 2.467 ∗ 10−6, p < 0.05, making the change

in page load times between having the extension disabled or enabled statistically significant.

Similarly, the test on the Chrome browser yields on average 235.52ms page load times when

the extension is disabled (see Figure 5.2). When enabled, the page load times were on average

https://gitlab.com/ilmikko/morpheus/morpheus-test
https://gitlab.com/ilmikko/morpheus/morpheus-test

5.1. OVERVIEW 46

Figure 5.1: Average page load time in milliseconds on the Firefox browser. The experiment was
repeated over 50 page loads each with Morpheus disabled and enabled. The error bars represent

standard error.

Figure 5.2: Average page load time in milliseconds on the Chrome browser. The experiment was
repeated over 50 page loads each with Morpheus disabled and enabled. The error bars represent

standard error.

256ms. The p-value of the t-test between the data sets is p = 2.2 ∗ 10−16, p < 0.05, making the

change in page load times between having the extension disabled or enabled statistically signifi-

cant.

5.1.2.3 Encryption

An experiment was held to measure the impact of message encryption on the latency of sending

a message. The hypothesis was that due to using Elliptic Curve Cryptography (ECC), the
message delivery time would be significantly longer, but not more than 500ms so that it still

stays within the performance barrier set by the Non-Functional Requirements.

The test was carried out by modifying the Morpheus source code to output a START time

stamp closest to the nearest millisecond when Morpheus receives a user input (user hits ‘Send’),

and again an END time stamp when the ciphertext is passed to the underlying IM-P (and ‘sent’

over the network). A bash script was written to type in a message ‘Message Test’ and then hit

Enter, repeated for 500 times, sleeping a few seconds in between typing to ensure the previous

5.1. OVERVIEW 47

message was successfully sent. This script was let to run in its entirety, and the output was then

processed further. The time duration between the END and START timestamps was extracted, and

this was written in a CSV file.

This test was performed only on Firefox 74.0, as the main bottleneck for encryption times

is GPG and Icelos, and times were very similar between the browsers.

The average time for sending a message without encryption (control) was 2.262ms (Figure

5.3). When encryption was used, the average time was 272.744ms. The p-value of the t-test be-

tween the two data sets is p = 2.2∗10−16, p < 0.05, making the difference statistically significant.

Figure 5.3: Average time taken to send a message over an IM-P, from the user input event to the
IM-P sending the network packet. The error bars represent standard error. Note that the y-axis

is on a logarithmic scale.

5.1.2.4 Decryption
Finally, an experiment was held to measure the impact of message decryption when receiving

messages. A control was not deemed necessary as the time taken from receiving a message to

someone observing said message would essentially be instantaneous, whereas the real interest is

how long it takes for a message to be decrypted in order for someone to observe the said message.

The hypothesis was that decryption of messages would not take on average more than 500ms
so that the software stays within the performance barrier set by the Non-Functional Requirements.

This test was carried out by again modifying the Morpheus source code to output a START

time stamp closest to the nearest millisecond when Morpheus sees a message, and an END time

stamp when the plaintext is displayed in the message body.

Morpheus was modified to send fixed messages of given size periodically. More specifically,

there were three different types of message size that decryption was tested on:

• Few words

– This is simply a message containing the string ‘Message Test’

• 1KB

– The first 1024 characters from the beginning of the GNU GPLv3 License1.
1https://www.gnu.org/licenses/gpl-3.0.txt

https://www.gnu.org/licenses/gpl-3.0.txt

5.1. OVERVIEW 48

• 32KB

– The first 32768 characters from the beginning of the GNU GPLv3 License.

These messages were to simulate typical sizes of instant messages sent by humans, and probe

the limits of encryption of larger content via Icelos and PGP. While 32KB is not a lot of characters

for a computer to process, it is a substantial amount of characters to write in a single instant

message.

The test was again performed only on Firefox 74.0 due to the reasons stated previously.

Figure 5.4: Average time taken to decrypt messages received on an IM-P, with text content of
given size. The error bars represent standard error.

The average times of decryption were 155.346ms, 156.546ms, and 155.98ms — respectively

for ‘Message Test’, an 1KB message and a 32KB message (Table 5.4).

The p-values for the t-tests can be found in Figure 5.5. All of the values in the table p > 0.05,

which means there is no statistical significance between the datasets.

Few words 1KB 32KB
Few words n/a 0.1217 0.4078
1KB n/a 0.4488
32KB n/a

Figure 5.5: P-values for the t-tests of each combination of the datasets.

5.2. SECURITY 49

5.2 Security
This section discusses in detail all of the security aspects of Morpheus, as well as potential attack

vectors and abuse cases of the program.

5.2.1 Perfect Forward Secrecy
The same way as with e-mail discussions, PGP does not have perfect forward secrecy. This means

that any encrypted messages sent some time in the past can be decrypted if the private key gets

compromised. This can be a problem if message history is retained in the IM-P. If the adversary

can steal the private key, they will have access to all sent messages in the past.

This can be resolved by using one-time ephemeral keys generated either per discussion, or

per message. After the discussion/message is deemed useless (e.g. if read), the ephemeral private

key is destroyed, and a new one is generated. These keys are signed with the master key that is

long-term and kept very private.

This project does not explore this option as it is mainly a PGP concern to set up a keying

system with ephemeral key rotation. While it is fair to perhaps consider PGP as not the best method

for performing encryption/decryption in communications such as this, Morpheus is fortunately

not strictly tied to PGP as a form of encryption. Future work of either implementing OTR2 or

the newer Signal protocol on the framework of sending/receiving messages via Morpheus is a

possibility. Using either of these contains a session-based ephemeral key setup where losing a key

is not such a large issue any longer3.

5.2.2 Abuse Cases
5.2.2.1 Malicious IM-P

Figure 5.6: Malicious Instant Messaging Platform or Webpage that Morpheus is used on. The
red outline indicates parts of the program that are compromised.

Morpheus directly accesses and edits the Data Object Model of the target web application in

order to display text. It clones elements and retains the originals in order to affect the functionality

of the IM-P as little as possible. However, as the DOM is shared between extensions and the

website scripts, it is possible that a malicious particularly targeted website script can target the

cloned elements and read their decrypted contents, as the principle of separation is violated in

current implementations of DOM. That is, the decrypted plaintext could be retrieved when the

DOM updates.

This can be mitigated in using the ‘Advanced Mode’ described in Section 4.5.2. This means

that the messages are left untouched, but decrypted in the extension and displayed there. The

2See Off-The-Record Messaging (OTR) in Chapter 2
3See Future Work in Chapter 6.2 for more information.

5.2. SECURITY 50

website will not have any information as all encryption/decryption happens in the extension and

its own closed container, as seen in Figure 5.6.

The reason why the advanced mode is not enabled by default is mainly in line with the

motivation of the rest of the project. We are assuming there is not necessarily a malicious adversary

on the IM-P — the encryption/decryption is done mainly because of concerns on data retention.

Were a platform truly malicious in intent and willing to create a Morpheus-specific attack, we need

not only to enable the advanced mode, but also to reconsider the priorities (mainly why this IM-P

/ IM-S is used in the first place).

5.2.2.2 Malicious Operating System

Figure 5.7: Malicious Operating System (OS) that the entire system is running on. The red
outline indicates parts of the program that are compromised. The red arrows indicate intercepted

traffic.

In case an operating system has been infected with a virus, or has other malicious proprietary

software running on it, the security benefits of the entire Morpheus system can be irrelevant.

If the underlying system is compromised, even the private keys handled by GPG can be

extracted regardless of GPG running in a container or on the host system. That is, no part of the

program is secure, as the OS has access to all of them (Figure 5.7).

Using a trusted and open-source Operating System (OS) will eliminate the possibility of this

abuse case.

Figure 5.8: Malicious executable running on the host system. The red arrows indicate inter-
cepted traffic.

If the system is not compromised, but an offending binary has access to the system, it can

potentially sniff on HTTP packets sent to and from Icelos and thus gain access to any plaintext

before encrypting, and plaintext after decrypting (See Figure 5.8). This sniffing can be mitigated

by using Transport Layer Security (TLS) to communicate between Morpheus and Icelos, which

can be enabled from Morpheus given that the certificates are generated correctly.

5.2.2.3 Malicious Browser

Even though the Morpheus web extension is run in a private and secure container, a malicious

browser would be detrimental to the security of the encrypted and decrypted messages. Thus, the

5.2. SECURITY 51

Figure 5.9: Malicious browser executable that Morpheus Browser Extension is running on.
The red outline indicates parts of the program that are compromised. The red arrows indicate

intercepted traffic.

entirety of the browser execution would be compromised, as seen in Figure 5.9.

The user’s private keys would remain safe, as neither Morpheus nor Icelos has access to them;

by design only GPG handles the keys. However, any ciphertext decrypted by Morpheus, regardless

whether in Advanced Mode or Basic Mode, could be intercepted by a malicious browser. The

same applies to plaintext that is encrypted using Morpheus. Using a well-known and open-source

browser which has been properly audited for security will eliminate these issues.

5.2.2.4 Malicious user of Icelos

Figure 5.10: Malicious executable running on the host system that poses itself as Morpheus and
communicates with Icelos. The red outline indicates parts of the program that are compromised.

The red arrows indicate intercepted traffic.

An adversary could encrypt and decrypt messages on behalf of someone, if they get access

to the host machine. This would be done by crafting requests that appear to be coming from

Morpheus, and sending them to Icelos over HTTP (Figure 5.10). While the adversary would not

gain access to the user’s private keys, they would be able to encrypt and decrypt any number of

messages as Icelos has direct access to GPG.

A way to mitigate this attack is to use modern firewall software on the client. Morpheus and

Icelos should also have SSLTLS enabled to encrypt all communication between the processes.

Morpheus could then be modified to employ more ways of authentication between the browser

extension and Icelos.

5.2.2.5 MitM on Icelos

Some adversary could craft a bogus Icelos process to run on the host. If the process does not

talk to GPG, it could not decrypt encrypted messages, but could still see plaintext before it gets

encrypted (Figure 5.11). If the process does talk to GPG, it could successfully act as Icelos,

brokering messages to and from GPG, but additionally keep log of the plaintexts.

In order for this to happen, the host machine would already need to be compromised.

This can be again mitigated by using SSL/TLS with trusted keys, and perhaps another layer

5.2. SECURITY 52

Figure 5.11: Malicious executable running on the host system that performs a MitM attack on
traffic. The red arrows indicate intercepted traffic.

of authentication to ensure the browser is talking to the correct Icelos.

5.2.2.6 Unattended Computer

Figure 5.12: Adversary taking advantage of an unattended computer. The red outline indicates
parts of the program that are compromised. The red arrows indicate intercepted traffic.

An adversary can gain access to the decryption mechanism of the GPG Agent if it has been

recently used. By default, GPG allows to cache the passphrase to the private key in order to

subsequently encrypt/decrypt/sign multiple messages. The default time window for this is 10

minutes — that is, the first message needs a password to decrypt, and the password is then cached

until 10 minutes of inactivity.

This means that if a person were to use Morpheus to decrypt messages and leave their laptop

unlocked, an adversary could decrypt messages if they use the computer in the last 10 minutes,

potentially compromising the system, as seen in Figure 5.12. A fix for this is to change the default

cache lifetime to something shorter, remove caching altogether and practice secure computing by

locking the computer after usage.

5.2.2.7 Over the Shoulder

An adversary could wait and look at plain text messages that are decrypted by the victim, as seen

in Figure 5.13. The best way to prevent this is to decrypt messages only in a private space. By

default, Morpheus does not automatically decrypt messages — the user has to prompt message

decryption by either:

5.3. TESTING 53

Figure 5.13: Adversary physically intercepting plaintext by looking over the shoulder of a user.
The red outline indicates parts of the program that are compromised. The red arrows indicate

intercepted traffic.

• Clicking on the lock icon next to an encrypted message to decrypt that single message.

• Enabling automatic decryption and thus decrypting all messages.

5.3 Testing
The business code was tested vigorously using all three methods of testing described below. Some

of the UI elements were unit tested as well when creating the component, and then later integra-
tion tested manually.

Encryption/decryption speeds were tested to keep a baseline of how fast the automatic en-

cryption/decryption works (see Section 5.1.2).

5.3.1 Component Testing
Component testing happens via unit testing frameworks in both Go and JavaScript. For both lan-

guages, each individual component is tested individually against a select set of test cases. Table-
driven testing ensures that test code stays concise and good coverage is reached. All the tests

create an average test coverage of 92% across the modules of Icelos. Morpheus Browser Ex-

tension components were also unit tested extensively where possible. Any regressions (previous

bugs) are also individually tested here to ensure they do not re-emerge.

5.3.2 System Testing
Even though there are no full integration tests with the back-end and front-end working together,

the system has integration tests for both of the ends separately. The back-end is tested that it runs

and communicates with GPG, and the front-end is tested to ensure proper communication between

modules.

5.3.3 Manual Testing
Finally, there is a certain number of test cases that are gone through in manual testing in order to

increase confidence that the software is working as expected. These manual tests are done in a

so-called ‘playground’ which provides a very basic ‘IM-P’ to test against. This is the same testbed

that was used in the performance evaluation in Section 5.1.2.

5.4. KNOWN ISSUES 54

The extension was tested on a few online platforms where I would ask a friend to install

Morpheus using the instructions of the user manual (Appendix A), and we would establish a

secure connection over the platforms4. I gained valuable feedback on what the pitfalls were in

both installing and using the system.

5.4 Known Issues
5.4.1 Store Availability
The extension is currently not on any common browser extension ‘stores’. This is mainly due to

time constraints of the project. There is a code review process that goes into releasing browser

extensions on the stores, and all major browsers have their own store systems.

Including Morpheus on all of the stores is not a goal of this project, and would potentially

take up a lot of development time as a ‘request for code and quality review’ would need to be

submitted individually for each of these stores. As Morpheus is largely a prototype, the cost of

re-installing the applet via an unconventional route while developing is not as high.

5.4.2 No separation of Own Keys from Recipient Keys
Morpheus needs to know the recipients’ own key in order for them to decrypt their conversation

history later. This was implemented in such a way that the own key simply becomes an additional

recipient to the encrypted message. The decision was made to simplify logic when encrypting;

while this is true, Morpheus can run into some edge cases:

If all recipient keys are missing in a group chat, an encrypted message would still be sent.

However, this message would only be encrypted to the sender — practically useless as the only

person who is able to decrypt the message has already seen it (being the one writing the message).

This can be fixed by either having Icelos handle Own Keys (by probing the list of GPG secret

keys, for example), or specify the two different key types when encrypting a message.

5.4.3 Difficulty of Creating Modules
Even when the modules are relatively simple and definitely concise, it requires quite a lot of

technical JavaScript knowledge to develop a module to Morpheus. It would be great to develop a

solution where users could simply point to an encrypted message and decrypt it at will. Similarly,

they could point to an input to ‘secure’ that input, regardless of the website.

This would tremendously extend the use cases of Morpheus, but isn’t unfortunately as easy to

do as it may intuitively sound. For example, given that web platforms have different sets of events

that input fields (or not even input fields but divs) listen to. It would be a painstaking process for

the software to guess which permutation of events to use for sending a message.

5.5 Fulfilment of Requirements
• Secure encryption of messages with PGP on an IM-P

– Morpheus provides two ways of securely encrypting messages on an IM-P.

• Secure decryption of messages with PGP on an IM-P

– Morpheus provides two ways of securely decrypting messages on an IM-P.
4PGP key exchange was handled separately, in person.

5.5. FULFILMENT OF REQUIREMENTS 55

• Detection of recipient and their key using the name on an IM-P

– Morpheus detects recipients based on Core Elements on a web page, and communi-

cates with GPG via Icelos to fetch the correct recipient keys.

• Detection of errors when recipient name is defective, either:

– if the name is ambiguous

∗ Morpheus specifically informs when a name is ambiguous (Figure 4.14)

– if the name cannot be found (i.e. when using a nickname)

∗ Morpheus informs when a recipient name cannot be found.

• Ability to change the recipient’s name manually if it is defective

– Morpheus provides an input to change the key in the extension (Figure 4.11(a))

• Interfacing with at least three different IM-P

– Morpheus has modules and can successfully encrypt and decrypt messages on the

following platforms:

∗ Discord

∗ Facebook Messenger

∗ Telegram Web

∗ WhatsApp Web

∗ Slack

5.5.0.1 Non-Functional Requirements
• Encryption/decryption should happen in a speed that is considered ‘almost instantaneous’

(< 500ms)

– Encryption and decryption both happen in a time below 500ms (Section 5.1.2)

• Should use open-source software for security reasons

– Morpheus is fully open-source, and the code is available on GitLab5

• Should keep platform-specific code at a minimum in order to improve code re-usability

– The only platform-specific code is within Morpheus modules, and it consists of only

around 50 lines of code per platform.

• Should allow users to interface (send encrypted messages) with their platform of choice

– Morpheus supports a predefined set of platforms.

– It is also possible to write a module for Morpheus relatively easily.

– However, an Element Picker approach could also work here (See Future Work in Chap-

ter 6)

5https://gitlab.com/ilmikko/morpheus

https://gitlab.com/ilmikko/morpheus

Chapter 6

Discussion

Over this chapter, we wrap up and discuss how the project went in its entirety. We discuss achieve-

ments, future work and learning opportunities that this project brought.

6.1 Achievements
6.1.1 Platform-Agnosticism

Overall, Morpheus works well as a truly platform-agnostic program. The modular design pattern

allows Morpheus only to have around 50 lines of code for each individual web platform, and all

the rest of the code stays generic. This makes it extremely easy to extend the functionality to

different sites without modifying the existing program code (and potentially breaking other sites’

functionality in the process).

Furthermore, because Morpheus uses the Extension API instead of targeting a single browser,

it is available for many different browser setups (Chrome, Firefox, Opera...). The usage of ES8

(ECMAScript 2017) ensures that most browsers support the functionality natively, and the usage

of Go for building the binary ensures maximum portability on most platforms1.

The system fully supports UTF-8, and sending characters such as letters in the Latin alphabet

or emoji works the same way as ‘regular’ text. Icelos and GPG also support encryption/decryption

of binary data such as audio and images, but due to interfacing questions (see Section 6.2.4) wasn’t

fully realised in this project when interfacing with IM-Ps.

The usage of Docker for Icelos and GPG gives more portability to the client-side of Mor-

pheus, allowing it to be installed on many major platforms.

6.1.2 Security

While it is left for other people to perform a rigorous security audit on the software, the software

has always been built security in mind. Morpheus does not introduce any new encryption algo-

rithms — instead, it uses well-known, trusted, and up-to-date software to perform encryption and

decryption.

Additionally, users are free to experiment with their own setup. While sensible security is

provided out-of-the-box, obviously different people have different use cases and thus the configu-

ration is easily available.

1See Section 3.2 for description about the choice of languages.

6.1. ACHIEVEMENTS 57

6.1.3 Respect for peoples’ individual setups

As well as being indifferent to the platform that people are using Morpheus on, many steps were

taken to ensure it would cater to as many setups as possible. The usage of GPG allows for encryp-

tion/decryption using any setup, including a standard encrypted/unencrypted local private key,

usage of smart keys / smart cards, etc. Thus the usage of master- and sub-keys is abstracted away

by GPG and Morpheus can enjoy the full feature set of the program.

The usage of Docker for the Icelos instance allows complete independence of the host plat-

form, meaning Morpheus can be installed on Windows, Mac, Linux or any OS that can run

Docker2.

Morpheus also does not force users on the receiving side to use Morpheus. Users could use

any software that encrypts/decrypts PGP to read the messages, or even develop their own. When

sending a message, Morpheus gives a link to a webpage3 that helps people use the software on

different platforms, or even decrypt messages manually without the help of the software.

6.1.4 Performance

Despite having large keys and a lot of messages, Morpheus is still fast to use. The usage of

Promises in JavaScript code, and a concurrent backend in Go, both enable the application to be

fast in encrypting/decrypting messages. Any expected delays are clearly displayed to the user: for

example, when decrypting a group of messages, they all change to show a loading message, and

then be procedurally decrypted in sequence of importance.

The IM-P remains usable even when Morpheus is decrypting or encrypting parts of it. Any

new messages that appear are caught by the Message Observer and marked for potential decryp-

tion. Any message is only ever touched once, which means the website is not repeatedly scanned

in its entirety. This brings down the complexity of the message marking algorithm to O(n) for n

messages.

The performance details can be observed in the testing results in Section 5.1.2.

6.1.4.1 Page Load Times

Looking at page loading speeds alone, Morpheus adds only around 25 milliseconds (on Chrome)

to 100 milliseconds (on Firefox) to page load time (Figures 5.1 & 5.2). As this increase is already

after the visual content (DOM, CSS) and the rest of the remote content has been loaded, the

perceived delay can be considered even less intrusive.

This includes time taken to initialise the script, set up relevant Message Observers, load up a

module for the given IM-P, mark messages for decryption and secure any Bind Inputs.

6.1.4.2 Encryption

Sending messages without encryption is obviously faster than encrypting the same messages. The

encryption experiment shows that Morpheus adds around 270ms of time for encryption before a

message can be sent (Figure 5.3). This falls well within the acceptable boundary set in the Core

Requirements, and does not create a perceivable difference in IM-P usage.

2Windows nor Mac were unfortunately not tested during the course of the project due to equipment restrictions and
unforeseen relocation circumstances due to COVID-19.

3https://5x.fi/morpheus/help

6.2. FUTURE WORK 58

6.1.4.3 Decryption

Decryption of messages is a larger performance concern, as in a chat application context there

may be 10-20 messages that are visible on screen. Morpheus decrypts all of these messages, some

of which may be large in size, so it’s important to be performant in handling decryption.

From the experiment, we can conclude that there is no conceivable difference in decryption

speeds when dealing with IM messages of a traditional size. Even messages of over 30 000

characters are decrypted almost instantaneously in around 150 milliseconds, the same time taken

for small messages (Figure 5.4).

For 20 messages, decrypting all of them without any parallelism would take around 3 sec-

onds. As both Icelos and Morpheus are designed to work with concurrent requests, this time is

taken down even further. Because of the Message Observer algorithm, decryption of new mes-

sages usually takes only a few hundred milliseconds. Again, because the DOM is updated while

decrypting, the perceived delay is less.

6.2 Future Work
Clearly, Morpheus is more at a proof-of-concept stage than a finished product that can be dis-

tributed to all end-users. This section discusses improvements that future work could hold.

6.2.1 Usability & Commercialisation
There are some usability improvements that could be done to bringing Morpheus to a more general

audience. Perhaps the biggest blocker for widespread usage of the tool is the difficulty of devel-

oping modules. This could be prevented by allowing people to choose the Core Elements using

a pointer tool and simply clicking an element, similar to how you can select a specific element to

block in AdBlock4.

This allows users to use Morpheus on sites that do not have a module that needs to be devel-

oped by a developer, and requires virtually no programming experience.

In order to make the message writing system more reliable, there are other ways to perform

artificial keyboard input on the client-side. This would mean that, instead of firing a complicated

sequence of JavaScript events, the OS could send keystrokes to the browser using a framework

such as Selenium. While this is a bit more complicated to implement (as sending keystrokes to

an application is a very platform-specific task), it would make sending encrypted messages more

robust and reliable.

6.2.1.1 Software as a Service

The extension should also be put into most common stores for Web Browsers to reach a wider

audience. This includes some cost, and supporting major platforms always incurs a small mainte-

nance cost as they will eventually change.

Morpheus could be provided as a Software as a Service — while it is free to download and

install for a tech-savvy person, there could be a ‘professional’ version that includes support. This

could provide a stable revenue stream to the developers while still keeping the project open-source

for security and trust reasons. As a plus, buyers of the software can also feel assured that they can

receive timely support for the service that they’re paying for.

4https://adblockplus.org

6.2. FUTURE WORK 59

Most of technical expertise required to use Morpheus is needed in the installation and module

creation phase of the software cycle. Once Morpheus has been installed on the client machine, it is

mostly maintenance-free. This means that the Software as a Service -approach can still be viable

even with a huge customer base, as developer/support time is not required for the average user.

6.2.2 Key Exchange

One way to improve Morpheus would be to include logic of handling key exchange and trust

networks. Instead of requiring users to perform key exchange over some secure platform (such as

face to face), they could automatically exchange keys securely based on user trust. This could be

done in a variety of ways, some discussed below.

6.2.2.1 Ephemeral Keys

Ephemeral keys between two users that already trust each other could be generated and cross

signed. If ephemeral keys were generated for each conversation individually, there would be

perfect forward secrecy for each discussion. Keys could then be destroyed after the conversation

has taken place, and thus render the old conversation unreadable.

New keys could then be generated for new conversations, and this kind of key rotation could

be automated by Morpheus.

6.2.2.2 Double Ratchet Algorithm

An example of an ephemeral key rotation algorithm would be the Double Ratchet Algorithm

(DRA). DRA is designed to have full perfect forward secrecy, and also something called post-

compromise security, a property which allows further secure communication even after an

ephemeral key has been compromised, given that one subsequent ephemeral key is left uncom-

promised.

6.2.3 Message Protocols

Of course, the ephemeral key rotation does not have to be done manually if algorithms such as the

OTR or Signal protocol are implemented into Morpheus instead of using PGP.

More researched protocols such as Signal already have implemented DRA [14]. While com-

mon providers of IM-Ss claim they are using the Signal protocol for end-to-end encryption[13, 5,

10, 4], much is left to be guessed about the exact implementations and details of the security of all

forms of communication.

Tools such as Morpheus can effectively offload the concern of end-to-end encryption to the

user, where they can configure and audit their own security and algorithm of choice.

For example, some users may only wish to use static passwords to encrypt their messages,

perhaps in the lack of a better mechanism (e.g. if the recipient does not have a PPK pair), or

because the recipient is not tech-savvy at all. For a human it’s much easier to say ‘the password is

the name of the place where we first met’ than ‘you need to generate keys on your machine, then

scan this QR code, and then we need to perform key exchange in a secure place...’ — again, it’s a

matter of how much security a concerned user needs.

6.2.4 Message Formats

Currently Morpheus only fully supports encryption and decryption of text and binary content, but

there are many other formats it could process.

6.2. FUTURE WORK 60

6.2.4.1 Encrypted Binary Data

Binary data encrypted and decrypted using GPG is all the same, and encrypting an image, a voice

message or a text message is all the same to the binary. The problem comes from integrating this

functionality to the IM-P. Sending binary data as a file may work, but is hardly acceptable from

the usability point of view.

For example, an image sent over a chat needs to be uploaded into the server, and this process

happens entirely within the browser for security reasons. While the binary data of the image could

be encrypted, it would hardly be sent as an ‘image’ to the IM server.

There could be a way to encrypt an image’s contents, keeping its format still an image. Yet,

when decrypting this encrypted image, it would have to pass through either complicated JavaScript

or be downloaded as browsers cannot write files on the host machine.

This is the same with audio; unless simply sending encrypted ‘files’ that actually are audio

and images, there is no easy way to integrate with the functionality that plays a voice message

directly back when received.

6.2.4.2 Steganography

Another interesting idea would be to embed text into seemingly harmless images. Morpheus could

be set up to choose an image from a pool of pictures, and process this image and embed the secret

encrypted message into the pixels. This could be a way to achieve security through obscurity, as

image content is of abundance and isn’t usually suspected of containing more data than meets the

eye.

6.2.5 Combating Metadata
Because users talk to each other on single IM-P, there is a lot of metadata being exchanged. It is

short-sighted to discuss about encryption of data without mentioning the metadata, and there is a

lot of it. For example, IM-Ps have all the metadata of who is talking to whom, when are messages

being sent, the tags of a photo, and so on.

As Morpheus already interfaces with the IM-P, it could incorporate some noise to the com-

munication. The software could send a bogus encrypted message every 5 seconds, and if there

are any actual messages that the user wants to send, they would be all sent at once in place of one

of those bogus messages. If the user on the other side was using Morpheus, the program could

skip all the bogus messages and remove them from the DOM to keep the chat clean for actual

messages. This would not disclose when the user has sent the message, and if Morpheus is left to

run for prolonged periods of time, can disguise communication as noise.

6.2.6 Mobile
A big improvement to Morpheus would be to allow it to work on Mobile. The problem with this

is the changed concept of Core Elements - while they can be identified in the structure of the UI,

similar querying and modification mechanisms such as DOM are not readily available. Worse,

there isn’t unified application suites for encryption and decryption, and the hardware support of

cryptographic keys and cards for the devices is not quite there. The mobile platform does offer

more interesting ways of authentication, such as fingerprint scanners and face authentication, but

only the future will show whether these get unified in any sound manner. Any Morpheus-like

applications would have to be heavily targeted for a single platform, as technologies differ greatly

6.3. LEARNING OPPORTUNITIES 61

even within the same mobile operating systems.

6.3 Learning Opportunities
This project had a lot of learning opportunities to take in. From a software design side, it is difficult

to predict perfectly which way a software is going to go, even if you think you have a ‘full’ plan.

There were multiple discussions about the initial system design that I had with my friends, which

made me realise once again how important white-boarding can be in designing a software system.

Thankfully I did not require any major refactorings, but in the early stages I did have to change a

few moving parts.

Obviously delving into implementation, even for a very simple design (See Figure 3.2) there

are a lot of unforeseen considerations that need to take place. I had never developed a browser

extension before, so it was an entirely new territory for me. It was never really clear how to

interface with GPG until implementing it. And definitely, the User Interface took a lot of iterations

to get to a comfortable level.

Having a weekly development cycle meant that I needed to carefully consider implementa-

tions that are feasible to do within that week. At first, I thought I was over-shooting my ambitions,

but it turned out to be the opposite. Towards the end of the project, this switched around, and I

realised I could not implement as much as I thought I could within a week. I think the take-home

message for me here is that it is truly challenging, given an arbitrary feature, to predict precisely

how long a software project will take. The agile approach did ensure I was always developing

something, and I’m glad during the software phase I had a very short feedback loop from my

supervisor.

If I was to start the project again, I would definitely spend more time thinking about each of

the functionalities further, expand on the idea of Core Elements. I would definitely run through

user stories to also understand different situations (Morpheus is on, but I want to send an unen-

crypted message; Someone has a nickname that’s different from my PGP keys; etc...). For lan-

guages I would probably choose TypeScript as the front-end language as I was constantly running

into typing issues when developing JavaScript.

Chapter 7

Conclusion

Years from now, I hope we will see ourselves in a future where Instant Messaging is more secure,

robust and streamlined. Perhaps, if our technologies mature, we will see a unification of most

common Instant Messaging Platforms into a common API, where clients could even write their

own front-ends — similar to how e-mail currently works.

In this dissertation, we have shown that it is possible to create a platform-agnostic Public-

Private Key (PPK) encryption/decryption wrapper on many of the modern Instant Messaging Plat-

forms, even if those platforms do not have a source or an API available to modify upon. The

fact that HTML is becoming more accessible, and people are making a group effort of unifying

the APIs makes it perfect for prototyping, but still requires a lot of work to be an exact working

solution across every single platform, including mobile.

Keen developers could even find a way to interface with IM-Ps on their own preferred plat-

forms. While platform-agnostic encryption can be done in a simple way using web extensions,

in theory, this should be extensible to any application given enough time and effort. Of course,

the usage of encryption mechanism is not only limited to PGP, and when interfacing (free read-

ing/writing) with Instant Messaging Platforms, any messaging protocol could potentially be used.

Evaluating the project at its end has shown that it is possible to interface with IM-Ps in a

way that does not interrupt a user’s workflow. This can be done very quickly in a few hundred

milliseconds maximum, tying seamlessly to the rest of the platform. Of course the software is not

ready to be published to all end-users, but acts as a proof-of-concept that this can be done. There

is some exciting future work to be committed now that the framework has been laid out, be it more

encryption methods (static password, Signal protocol, etc...) or solving problems with secure key

exchange and trust networks automatically.

Software such as Morpheus enable users to not implicitly trust the platform — be it due to

concerns about message encryption or the data retention — and instead use a wrapper to secure

their messages on the fly without intervention. It separates the concern of end-to-end encryption

from the Instant Messaging Service provider and shifts the power to the user to decide for the

storage and retention of their own messages, allowing for a more secure and private conversation.

Appendix A

User Manual

A.1 Installing Morpheus
In order to install Morpheus, you will need to build the browser extension and set up Icelos.

The source code of Morpheus can be found here:

https://gitlab.com/ilmikko/morpheus

You can either clone the repository, or download a zip directly using this link:

https://gitlab.com/ilmikko/morpheus/-/archive/master/morpheus-master.zip

You will also need a working PGP setup (See Section A.1.3).

A.1.1 Building the Extension
This section describes the browser extension. If you already have Morpheus installed in your

browser, please see Setting up Icelos in Section A.1.2.

You can install the browser extension as follows:

Go to the cloned Morpheus repository.

Open folder ‘morpheus‘.

Run ‘make‘ in this directory. This creates a .zip file that you can open in your browser.

Open up your browser, and follow the steps for Chrome or Firefox.

A.1.1.1 Firefox

(a) (b)

Figure A.1

Create a new tab, and type in ‘about:addons‘ to the address bar (Figure A.1).

This should take you to the ‘Manage Your Extensions’ page.

You could also press Ctrl+Shift+A or navigate to ‘Addons’ in the Firefox menu.

On the ‘Manage Your Extensions’ page, click the cogwheel icon on the top right corner

(Figure A.2).

https://gitlab.com/ilmikko/morpheus
https://gitlab.com/ilmikko/morpheus/-/archive/master/morpheus-master.zip

A.1. INSTALLING MORPHEUS 64

Figure A.2

Figure A.3

A drop down menu appears.

Click on the item ‘Debug Add-ons’ (Figure A.3).

Do NOT click on ‘Install Add-on From File’ as this does not currently work.

Figure A.4

After clicking ‘Debug Add-ons’, you should see a menu for Temporary Extensions.

Click ‘Load Temporary Add-on’ on the top right corner (Figure A.4).

Navigate to the zip file you created under Building the extension (Section A.1.1), and open it

(Figure A.5).

Morpheus should now be installed in your browser (Figure A.6)!

A.1.1.2 Chrome

Create a new tab, and type in ‘about:extensions‘ or ‘chrome:extensions‘ to the address bar (Figure

A.7).

This should take you to the ‘Extensions’ page.

A.1. INSTALLING MORPHEUS 65

Figure A.5

Figure A.6

You could also navigate to ‘Extensions’ in Chrome settings.

Enable ‘Developer Mode’ on the top right corner (Figure A.8).

This will display an additional menu on the top left.

Click ‘Load unpacked’ in the top left menu (Figure A.9).

Navigate to the extension folder you created under Building the extension (Section A.1.1),

and open the folder (Figure A.10).

Morpheus should now be installed in your browser (Figure A.11)!

A.1.2 Setting up Icelos

A.1.2.1 Basic Docker Setup

The easiest way to set up Icelos is to install Docker on your computer.

You can then build the Dockerfile by doing as follows:

Go to the cloned Morpheus repository.

Run docker-compose up in this directory.

Icelos will start running on the specified port.

A.1.2.2 Advanced Setup

If your PGP setup is more elaborate, you can also have Icelos run directly on the host machine and

connect to GPG.

This is usually required if your PGP setup greatly varies from the out-of-the-box setup, and/or

if you’re using smartcards or similar.

You should have Go and Make installed.

Simply go to the cloned Morpheus repository, open the folder called ‘icelos‘, and build the

binary using ‘make‘.

Afterwards, you can run Icelos directly any time you need to use Morpheus, or keep it running

using the provided Systemd daemon.

A.1.3 Setting up PGP

Morpheus uses GPG to encrypt and decrypt PGP messages.

There are many great resources online for GPG, for example you can follow this tutorial to

get started: https://www.gnupg.org/gph/en/manual/c14.html

The most important point is that you should never ever share your private key with anyone.

Nobody should be telling you to use a private key they generated - this is very unsecure.

https://www.gnupg.org/gph/en/manual/c14.html

A.1. INSTALLING MORPHEUS 66

(a) (b)

Figure A.7

Figure A.8

Once you have GPG installed, you should generate a public-private key pair and keep the

private key very private.

Other people will use your public key to encrypt messages to you. In order to tell people

about your public key, you need to exchange the keys securely (see Section A.1.4).

Once you start receiving messages encrypted with your public key, you can then use your

private key to decrypt them.1

A.1.4 Exchanging Keys Securely

This is something Morpheus cannot do due to the laws of cryptography.

If you want to exchange keys with someone, you should do that over a secure channel, or

off-line.

The best way to securely exchange keys is to meet in person. This eliminates any man-in-

the-middle attacks or impersonation attempts.2

A.1.5 Frequently Asked Questions

A.1.5.1 Morpheus encountered an unexpected error

For error messages, hover your mouse over the error icon for more information.

A.1.5.1.1 Connection refused to Icelos on port XXXX This means that Morpheus is failing to

find Icelos that it requires to encrypt/decrypt PGP messages.

Please revise the steps in Setting up Icelos in Section A.1.2 to resolve the issue, paying close

attention to the port numbers.

1For more information about the process, you can read this article: https://www.khanacademy.
org/computing/ap-computer-science-principles/the-internet/tls-secure-data-transport/a/
public-key-encryption

2You can read more about secure key exchange in https://ssd.eff.org/en/module/
deep-dive-end-end-encryption-how-do-public-key-encryption-systems-work#4.

https://www.khanacademy.org/computing/ap-computer-science-principles/the-internet/tls-secure-data-transport/a/public-key-encryption
https://www.khanacademy.org/computing/ap-computer-science-principles/the-internet/tls-secure-data-transport/a/public-key-encryption
https://www.khanacademy.org/computing/ap-computer-science-principles/the-internet/tls-secure-data-transport/a/public-key-encryption
https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-encryption-systems-work#4
https://ssd.eff.org/en/module/deep-dive-end-end-encryption-how-do-public-key-encryption-systems-work#4

A.1. INSTALLING MORPHEUS 67

Figure A.9

Figure A.10

If the port number for Morpheus (1234) is not the same as the port number of Icelos (1234),

then Morpheus will not be able to find Icelos.

A.1.5.1.2 Missing host permission for the tab This means that Morpheus cannot encrypt or

decrypt messages on the current tab.

Morpheus may still work on other tabs, but there are some tabs (such as the extensions page)

that cannot be modified by Morpheus.

A.1.5.2 I have received an encrypted message.

The message should look something akin to Figure A.12.

In order to decrypt a message encrypted with Morpheus, you don’t need Morpheus (although

it will make your life easier).

Follow the sections below depending on whether you want to decrypt manually, or using

Morpheus.

A.1.5.2.1 Decrypting Using Morpheus If you do not have Morpheus installed, refer to In-

stalling Morpheus first.

Once you have installed Morpheus, you should be able to decrypt any PGP or Morpheus

messages automatically, or by pressing a lock icon next to the message.

If you get decryption errors, refer to the FAQ in Section A.1.5.

A.1.5.2.2 Decrypting Manually Morpheus messages are PGP encrypted. They follow a slightly

different format due to format limitation of some chat platforms.

If you do not have an active PGP setup, then you should be suspicious - the message is

probably not encrypted for you.

In order to set up PGP, please refer to Setting up PGP in Section A.1.3, and afterwards ask

the sender to re-send their message using your public key.

The only difference is in the start and end tokens of the messages (Figure A.13).

Morpheus messages start with Encrypted:[and end with a single].

The PGP data lays in the middle of these two tokens.

You can start by copying and pasting the message into your favourite text editor (Figure

A.14).

Move the start and end tokens on their own lines so you won’t accidentally chop off any

important data (Figure A.15).

A.1. INSTALLING MORPHEUS 68

Figure A.11

Figure A.12

Then, replace the start token Encrypted:[with -----BEGIN PGP MESSAGE-----.

Replace the end token] with -----END PGP MESSAGE-----.

Take care as PGP is very particular about the format of these tokens (Figure A.16).

That’s it, you now have a valid PGP message!

You can now, depending on your PGP setup, decrypt this message.

Below is a command-line example.

$ gpg --decrypt message.txt

gpg: encrypted with 2048-bit RSA key, created 2020-02-04

(y)

It is, of course, quite cumbersome to do this for every message that you receive.

If you end up doing this a lot you might want to look into installing Morpheus in Section A.1.

A.1. INSTALLING MORPHEUS 69

Figure A.13

Figure A.14

Figure A.15

Figure A.16

A.1. INSTALLING MORPHEUS 70

Figure A.17: Screenshot of Morpheus working on Telegram Web.

Figure A.18: Screenshot of Morpheus working on Facebook Messenger.

Appendix B

Maintenance Manual

B.1 Software Requirements

Morpheus requires the following software for best results:

• Golang 1.14.2

• Docker 19.03.8-ce, build afacb8b7f0

• Browser that supports the WebExtensions API, such as:

– Google Chrome 81.0.4044.113

– Mozilla Firefox 75.0

B.2 Installation

Please refer to Section A.1 for detailed installation instructions.

The source code of Morpheus can be found here: https://gitlab.com/ilmikko/

morpheus

B.3 Implementing Modules

In order to implement a module for Morpheus, you will first need to open up an Instant Messaging

Platform (IM-P) that you want to interface with.

Take note of the URL on the top of the page and copy this into morpheus/common/site-detector.js.

Create a simple ID that site-detector will return, that doesn’t clash with existing module IDs.

Then, create a new file into morpheus/module/<ID>.js. Inside this file, paste the following

template:

https://gitlab.com/ilmikko/morpheus
https://gitlab.com/ilmikko/morpheus

B.3. IMPLEMENTING MODULES 72

i f (S i t e D e t e c t o r . C u r r e n t () == ’<INSERT YOUR ID HERE> ’)

b rowse r . r u n t i m e . sendMessage ({

command : ’ module ’ ,

customCSS : ‘ ‘ ,

b i n d I n p u t s : [

/ / TODO

] ,

messageFeeds : [

/ / TODO

] ,

messageElement : ’ ’ , / / TODO

messageText : ’ ’ , / / TODO

r e c i p i e n t H i n t s : [

/ / TODO

] ,

r e s e t t e r s : ’ ’ / / TODO

}) ;

Now, identify each of the Core Elements (defined in Section 3.2.5) in the IM-P and note down

their DOM query. You can easily do this by opening up the Browser Console using F12, and in

the console typing in document.querySelector("<YOUR QUERY>") and seeing if this returns

the expected element.

After filling all of the Core Elements, recreate the Morpheus Web Extension and check that

you have the functionality you require. You may need to tweak some settings for best results (see

other modules as example).

B.4. PROJECT TREE 73

B.4 Project Tree

B.4.1 Root
how-to –- User Instructions
icelos –- Source code for Icelos
morpheus –- Source code for Morpheus Browser Extension
morpheus-test –- Testing and evaluation code

index.html –- Contains a mock IM-P to test with
test-server.go –- Simple HTTP server for testing

README.md –- Information about the project
docker-compose.yml –- Instructions for installation on Docker

B.4.2 Morpheus
background –- Source code for the Background Script (Section 3.2.6.1)

icelos.js –- Code for interfacing with Icelos
morpheus.js –- Main logic for Morpheus Browser Extension
tabdata.js –- Logic for keeping data between Morpheus instances within
tabs separate

common –- Source code shared across scripts
constants.js –- Constants such as port numbers
convert.js –- Conversion between PGP and Morpheus encryptions (Section
4.2.8)
debounce.js –- Debounce functiona

http.js –- HTTP into Promise wrapper (Section 4.2.2)
polyfill.js –- Polyfill for nonconforming browsers (Section 4.2.3)
send.js –- Code for unified message passing between modules
site-detector.js –- Code for detection of sites for modules (Section
4.2.5)

img –- Image content
inject –- Source code for the Inject Script (Section 3.2.6.3)

element.js –- Code for manipulating DOM elements
element_picker.js –- Code for DOM element queries
element_store.js –- Code for storing/retrieving original and cloned
DOM elements (Section 4.2.7)
guard.js –- Code to ensure a single run on multiple injects
guard_end.js –- Ditto
inject.css –- Styling rules for injected DOM elements
morpheus.js –- Injected portion of Morpheus
recipient.js –- Code for keeping track of recipients

module –- Source code for all Modules
popup –- Source code for the Popup Script (Section 3.2.6.2)

default –- Logic for when the extension icon is clicked
settings –- Popup logic for the settings page
status –- Popup logic for the status page (Section 4.5.2)
welcome –- Popup logic for the welcome/setup page

Dockerfile –- Instructions for Docker to build Morpheus
make.extension.sh –- Build script for creating the extension
makefile –- Build rules
README.md –- Information about the Morpheus Browser Extension

ahttps://medium.com/@jamischarles/what-is-debouncing-2505c0648ff1

https://medium.com/@jamischarles/what-is-debouncing-2505c0648ff1

B.4. PROJECT TREE 74

B.4.3 Icelos
config –- Default configuration module
icelos –- Source code for the Icelos Go module

gpg –- Source code for interfacing with GPG
gpg.go –- Code for encrypt/decrypt using GPG
keys.go –- Code for key querying and retrieval using GPG

encrypt.go –- Code for Icelos encryption
decrypt.go –- Code for Icelos decryption
icelos.go –- Code for HTTP server and Icelos module
keys.go –- Code for Icelos key querying

icelos.go –- Icelos Go main package
Dockerfile –- Instructions for Docker to build Icelos
icelos.service –- Icelos Systemd service file
makefile –- Build rules
README.md –- Information about Icelos

Bibliography

[1] Bernstein, D. (2016). A state-of-the-art diffie-hellman function. https://cr.yp.to/ecdh.

html Last Accessed: 2020-04-09.

[2] Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., and Stebila, D. (2017). A formal

security analysis of the signal messaging protocol. In 2017 IEEE European Symposium on

Security and Privacy (EuroS&P), pages 451–466. IEEE.

[3] Ermoshina, K., Musiani, F., and Halpin, H. (2016). End-to-end encrypted messaging proto-

cols: An overview. In International Conference on Internet Science, pages 244–254. Springer.

[4] Greenberg, A. (2016a). With allo and duo, google finally en-

crypts conversations end-to-end. https://www.wired.com/2016/05/

allo-duo-google-finally-encrypts-conversations-end-end/ Last Accessed:

2020-05-01.

[5] Greenberg, A. (2016b). You can all finally encrypt face-

book messenger, so do it. https://www.wired.com/2016/10/

facebook-completely-encrypted-messenger-update-now/ Last Accessed: 2020-

05-01.

[6] Herra-Vega, F. (2017). The new peerio: A technical deep dive. https:

//web.archive.org/web/20181107124811/https://www.peerio.com/blog/posts/

the-new-peerio-a-technical-deep-dive/ Last Accessed: 2020-03-16.

[7] Jonathan Christensen, P. Z. (2019). Wire security whitepaper. https://wire-docs.wire.

com/download/Wire+Security+Whitepaper.pdf Last Accessed: 2020-04-09.

[8] Kobeissi, N. (2019). Cryptocat - security. https://web.archive.org/web/

20190228095608/https://crypto.cat/security.html Last Accessed: 2020-03-16.

[9] Lee, M., Grauer, Y., Lee, M., and Grauer, Y. (2020). Zoom meetings aren’t end-to-

end encrypted, despite misleading marketing. https://theintercept.com/2020/03/31/

zoom-meeting-encryption/ Last Accessed: 2020-04-09.

[10] Lund, J. (2018). Signal partners with microsoft to bring end-to-end encryption to skype.

https://signal.org/blog/skype-partnership/ Last Accessed: 2020-05-01.

[11] Marshall, P. (2018). When is a back door not a back door? https://gcn.com/articles/

2018/01/16/fbi-encryption-backdoor.aspx Last Accessed: 2020-03-16.

[12] McMahon, J. (2017). Why we should all ditch other mes-

saging apps for signal. https://www.wired.com/story/

ditch-all-those-other-messaging-apps-heres-why-you-should-use-signal/

Last Accessed: 2020-03-20.

[13] Metz, C. (2016). Forget apple vs. the fbi: Whatsapp just switched

https://cr.yp.to/ecdh.html
https://cr.yp.to/ecdh.html
https://www.wired.com/2016/05/allo-duo-google-finally-encrypts-conversations-end-end/
https://www.wired.com/2016/05/allo-duo-google-finally-encrypts-conversations-end-end/
https://www.wired.com/2016/10/facebook-completely-encrypted-messenger-update-now/
https://www.wired.com/2016/10/facebook-completely-encrypted-messenger-update-now/
https://web.archive.org/web/20181107124811/https://www.peerio.com/blog/posts/the-new-peerio-a-technical-deep-dive/
https://web.archive.org/web/20181107124811/https://www.peerio.com/blog/posts/the-new-peerio-a-technical-deep-dive/
https://web.archive.org/web/20181107124811/https://www.peerio.com/blog/posts/the-new-peerio-a-technical-deep-dive/
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://wire-docs.wire.com/download/Wire+Security+Whitepaper.pdf
https://web.archive.org/web/20190228095608/https://crypto.cat/security.html
https://web.archive.org/web/20190228095608/https://crypto.cat/security.html
https://theintercept.com/2020/03/31/zoom-meeting-encryption/
https://theintercept.com/2020/03/31/zoom-meeting-encryption/
https://signal.org/blog/skype-partnership/
https://gcn.com/articles/2018/01/16/fbi-encryption-backdoor.aspx
https://gcn.com/articles/2018/01/16/fbi-encryption-backdoor.aspx
https://www.wired.com/story/ditch-all-those-other-messaging-apps-heres-why-you-should-use-signal/
https://www.wired.com/story/ditch-all-those-other-messaging-apps-heres-why-you-should-use-signal/

BIBLIOGRAPHY 76

on encryption for a billion people. https://www.wired.com/2016/04/

forget-apple-vs-fbi-whatsapp-just-switched-encryption-billion-people/

Last Accessed: 2020-05-01.

[14] Perrin, T. and Marlinspike, M. (2016). The double ratchet algorithm. https://signal.

org/docs/specifications/doubleratchet/doubleratchet.pdf Last Accessed: 2020-

05-01.

[15] Price, R. (2015). David cameron wants to ban encryption. https://www.

businessinsider.com/david-cameron-encryption-apple-pgp-2015-1?r=UK Last

Accessed: 2020-03-16.

[16] Robison, C., Ruoti, S., van der Horst, T. W., and Seamons, K. E. (2012). Private facebook

chat. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012 Interna-

tional Conference on Social Computing, pages 451–460. IEEE.

[17] Sun, Y., Liu, D., Chen, S., Wu, X., Shen, X.-L., and Zhang, X. (2017). Understanding

users’ switching behavior of mobile instant messaging applications: An empirical study from

the perspective of push-pull-mooring framework. Computers in Human Behavior, 75:727 –

738.

[18] Sutikno, T., Handayani, L., Stiawan, D., Riyadi, M. A., and Subroto, I. M. I. (2016). What-

sapp, viber and telegram: Which is the best for instant messaging? International Journal of

Electrical & Computer Engineering (2088-8708), 6(3).

[19] Vaas, L. (2018). Fbi: we don’t want a backdoor; we just want you

to break encryption. https://nakedsecurity.sophos.com/2018/03/12/

fbi-we-dont-want-a-backdoor-we-just-want-you-to-break-encryption/ Last

Accessed: 2020-03-16.

[20] Wagner, K. (2018). Here’s how facebook allowed cambridge analytica to

get data for 50 million users. https://www.vox.com/2018/3/17/17134072/

facebook-cambridge-analytica-trump-explained-user-data Last Accessed: 2020-

03-16.

[21] Weinberger, M. (2014). Matrix wants to smash the walled gar-

dens of messaging. https://www.itworld.com/article/2694500/

matrix-wants-to-smash-the-walled-gardens-of-messaging.html Last Accessed:

2020-03-20.

[22] Whited, S. (2019). Xep-0364: Current off-the-record messaging usage. https://xmpp.

org/extensions/xep-0364.html#overview Last Accessed: 2020-04-09.

[23] Winder, D. (2019). Unsecured facebook databases leak data of 419 mil-

lion users. https://www.forbes.com/sites/daveywinder/2019/09/05/

facebook-security-snafu-exposes-419-million-user-phone-numbers/

#39b5595a1ab7 Last Accessed: 2020-03-16.

https://www.wired.com/2016/04/forget-apple-vs-fbi-whatsapp-just-switched-encryption-billion-people/
https://www.wired.com/2016/04/forget-apple-vs-fbi-whatsapp-just-switched-encryption-billion-people/
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://www.businessinsider.com/david-cameron-encryption-apple-pgp-2015-1?r=UK
https://www.businessinsider.com/david-cameron-encryption-apple-pgp-2015-1?r=UK
https://nakedsecurity.sophos.com/2018/03/12/fbi-we-dont-want-a-backdoor-we-just-want-you-to-break-encryption/
https://nakedsecurity.sophos.com/2018/03/12/fbi-we-dont-want-a-backdoor-we-just-want-you-to-break-encryption/
https://www.vox.com/2018/3/17/17134072/facebook-cambridge-analytica-trump-explained-user-data
https://www.vox.com/2018/3/17/17134072/facebook-cambridge-analytica-trump-explained-user-data
https://www.itworld.com/article/2694500/matrix-wants-to-smash-the-walled-gardens-of-messaging.html
https://www.itworld.com/article/2694500/matrix-wants-to-smash-the-walled-gardens-of-messaging.html
https://xmpp.org/extensions/xep-0364.html#overview
https://xmpp.org/extensions/xep-0364.html#overview
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-numbers/#39b5595a1ab7
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-numbers/#39b5595a1ab7
https://www.forbes.com/sites/daveywinder/2019/09/05/facebook-security-snafu-exposes-419-million-user-phone-numbers/#39b5595a1ab7

	Abbreviations
	Introduction
	Motivation
	Goals & Non-Goals
	Goals
	Non-Goals

	Background
	im Platforms
	Why Encrypt?
	Public-Private-key Encryption
	ppk Scenarios

	pgp
	gpg

	Current Usage of pgp
	Why pgp?

	Previous Attempts

	Design & Architecture
	Design
	Core Requirements

	Architecture
	Morpheus
	Icelos - Morpheus Client Daemon
	Encryption on Chat
	Interfacing with imps
	Core Elements
	Browser Extension Design
	Recipient Validation

	Implementation
	Development Setup
	Morpheus
	Core Elements
	Promises
	Messaging
	Context Separation
	Modules
	More Efficient Querying
	Element Cloning
	Message Chunking
	Message Observer

	Icelos
	http Messaging
	Docker
	Service

	Interfacing
	Inject Script
	Reverse Engineering
	Mobile

	Usability
	Colours & Clarity
	Keys

	Evaluation
	Overview
	Portability
	Performance

	Security
	Perfect Forward Secrecy
	Abuse Cases

	Testing
	Component Testing
	System Testing
	Manual Testing

	Known Issues
	Store Availability
	No separation of Own Keys from Recipient Keys
	Difficulty of Creating Modules

	Fulfilment of Requirements

	Discussion
	Achievements
	Platform-Agnosticism
	Security
	Respect for peoples' individual setups
	Performance

	Future Work
	Usability & Commercialisation
	Key Exchange
	Message Protocols
	Message Formats
	Combating Metadata
	Mobile

	Learning Opportunities

	Conclusion
	User Manual
	Installing Morpheus
	Building the Extension
	Setting up Icelos
	Setting up PGP
	Exchanging Keys Securely
	Frequently Asked Questions

	Maintenance Manual
	Software Requirements
	Installation
	Implementing Modules
	Project Tree
	Root
	Morpheus
	Icelos

